INDEX

Sr. No.	Торіс	Page No.							
	Algebra								
1	Sets								
2	Surds and Indices								
3	Ratio and Proportion								
4	Linear Equation in two variables								
5	Quadratic equations	Quadratic equations							
6	Arithmetic Progression								
7	Probability								
8	Statistics								
	Geometry								
9	Similarity								
10	Pythagoras theorem								
11	Circle								
12	Tr <mark>igono</mark> metry								
13	He <mark>ight a</mark> nd distances								
14	Are <mark>a and</mark> Volume								

Grooming the **Leader**

EFENC

C

1.Sets

Important Facts and Formulae

- 1] Set: A collection of well defined objects is called a set. The objects which belongs to the set are called elements or members of the set.
- 2] Equal sets: Two sets A and B are said to be equal if every element of A is an element of B and also every elements of B is an element of A.
- **3] Cardinal number of a set:** The number of elements in a finite set A is called cardinal number of set A and is denoted by n(A).
- 4] Equivalent sets: Two sets are said to be equivalent if they contain the same number of elements. i.e. if n(A)=
 n(B)
- 5] Equal sets are equivalent but equivalent sets are not always equal.
- 6] Finite and infinite sets: A set which contain a finite number of elements is called a finite set and a set which is not finite is called an infinite set.
- **7]** Empty or null set: The set which contains no element at all is called an empty set or null set. It is usually denoted by φ.
- 8] Subset of a set: If A and B are two set such that every element of A is also an element of the set B, then A is called subset of B and we write $A \subseteq B$ or by $A \subseteq B$. Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$.
- 9] Number of subsets of a set: If A is set of 'n' distinct elements then the number of subsets of A is 2ⁿ.
- **10]** Symmetric difference of two sets: It is defined as a set consisting of all those members of A which are not in B or those which are in B but not in A and is denoted by A Δ B.

Thus, $A\Delta B = \{x: x \in A \text{ but } x \notin B\} \cup \{x: x \in B \text{ but } x \notin A\} = (A-B) \cup (B-A)$

11] Properties of algebra of sets:

a) Commutativity: For any two set A and B:

 $AUB = BUA and A \cap B = B \cap A$

b) Associativity: For any three sets A, B and C,

 $(AUB)UC = AU(BUC) and (A \cap B) \cap C = A \cap (B \cap C)$

c) Distributivity: For any three sets A, B, C

AU(B \cap C) = (AUB) \cap (AUC) and A \cap (BUC) = (A \cap B) U (A \cap C)

d) De Morgan's law: For any two sets A and B, $(AUB)' = A' \cap B'$ and $(A \cap B)' = A' UB'$

14] Ordered pair: Given two sets A and B, let a ϵ A and be b ϵ B. Then the ordered pair of two objects a and b is denoted by (a, b), where 'a' is designated as the first member and b as the second.

15] Equal order pairs: Two ordered pairs (a, b) and (c, d) are said to be equal if a = c and b = d

- **Results:** 1. when A and B are disjoint sets, then, n (AUB) = n(A) + n(B)
 - 2. When A and B are not disjoint then, n (AUB) = $n(A) + n(B) n(A \cap B)$

Multiple Choice Questions

.eadei

d) Happy people in a city

- 1. Which of the following collection is set?
 - a) The collection of prime numbe<mark>rs b) The collection of good t</mark>eachers in your college
 - c) Brillant student in class
- 2. A set is:
 - a) collection of objects b) well defined collection of objects
 - c) list of objects d) group of objects
- 3. How will you write following set in roster form; $B = \{x | x \text{ is a colour in the rainbow}\}$
 - a) B = {yellow, orange, red, violet, blue, white, grey}
 - b) B = {black, green, pink, violet, pink, blue, white, grey}
 - c) B = {Grey red, yellow, violet, pink, blue, indigo}
 - d) B = {White, black, pink, orange, blue, grey, green}
- 4. How will you write following set in set builder form: $H=\{5, 5^2, 5^3, 5^4\}$

a) $H = (x | x = 5^{n}, n \in N, n \le 4)$ b) $H = (x | x = 5^{n}, n \notin N, n \ge 4)$

	c) H = (x x = n⁵, n ∉ N, n ≤ 4)	d) H = (x x = n², n ∈ N, n ≥ 4)
5.	State which of the following set i	s singleton set
	a) B= {y y^2 = 36}	b) A = {x \sqrt{x} = 16}
	c) C = {x $x^3 = 8$ }	d) D= {x x is a colour in a rainbow}
6.	Which of the following set is emp	pty?
	a) A set of all numbers	b) B = {x x is a capital of India}
	c) $F = \{y y \text{ is a point of intersection} \}$	on of two parallel lines}
	d) H = $\{t t \text{ is a triangle having thr}$	ee sides}
7.	Find the union of following pair of	of sets: $A = \{a, e, i, o, u\}, B = \{a, b, c, d\}$
	a) AUB = $\{a, e, i, o, u, a, b, c, d\}$	b) AUB = {a}
	c) $AUB = \{a, b, c, d\}$	d) AUB = {a, b, c, d, e, i, o, u}
8.	Find intersection of the following	pair of set: A = {x x \in N, 5 < x < 10), B = {y y \in W, 5 ≤ x < 10}
	a) A∩B = {5, 6, 7, 8, 9}	b) A∩B = {5, 6, 7, 8, 9, 10}
	c) $A \cap B = \{6, 7, 8, 9\}$	d) A∩B = {5}
9.	Let $U = \{x x = 2^n, n \in W, n < 8\}$ be	the universal set.
	A = { $y y = 4^{n}$, n \in N, n < 4}. B = {	$z z = 8^n$, $n \in N$, $n \le 2$ Then what will be value of (A - B)'.
	a) (A - B)'= {1, 2, 8, 32, 64, 128}	b) (A - B)'= {2, 4, 16, 36, 49}
	c) (A - B)'= {2, 16, 49, 64}	d) (A - B)'= {1, 2, 16, 32, 128}
10.	Let S and P be the two sets such	that n (S) = 5, n(SUP) = 9, n(S \cap P) = 2, find n(P).
	a) n (P) = 4 b) n (P) = 2	c) n (P) = 3 d) n (P) = 6
11.	In a class of 50 girls, 35 girls like of	cooking 25 girls like rangoli as well as cooking, All the girls have at least one
	of the t <mark>wo ho</mark> bbies. How many g	irls like only rangoli?
	a) 20 girl <mark>s b) 10 girls (</mark>	c) 15 girls d) 25 girls
12.	If A & B ar <mark>e two</mark> sets such that n	(A) = 70, n (B) = 60, n (AUB) = 110, then (A∩B) is eq <mark>ual to</mark>
	a) 240 b) 100	c) 120 d) 20
13.	lf A = {1, 2, <mark>3}, B =</mark> {3, 4} <mark>&</mark> C = { 1	<mark>.,</mark> 3, 5 }, find (A x B) ∩ (A x C).
	a) {(1, 3), (2, <mark>3), (3, 3</mark>)}	b) {(1, 4), (2, 3), (3, 3)}
	c) {(3, 3), (3, 4) <mark>, (3, 3)}</mark>	d) {(1, 5), (2, 3), (1, 4)}
14.	If A & B are two <mark>sets, then A ∩</mark> (A 🗋 B)' equal
	a) A b) ф	c) B d) None of these
15.	In a school of 300 students, ever	y student writes 5 essays & every essay is written by 60 students. The
	number of essays are	
	a) at least 30 b) at most 20	c) exactly 25 d) none of these
	Answer Keys	L L pader
	1.a 2.b 3.a 4.a	5. b 6. c 7. d 8. c 9.a 10. d
	11. c 12. d 13. a 14. b	15. c
	HINTS AND SOLUTIONS	
1	Let A be the set of girls who like	cooki <mark>ng and B = Set of girls</mark> who like rangoli.
	n(A) = 35, n(AUB) = 50, n(A∩B) =	25
	∴ n (AUB) = n(A) + n (B) - n (A∩B) ∴ 50 = <mark>35+</mark> n (B) - 25 ∴ n (B) = 40.
	Out of 40 girls, n (A∩B) = 25	
	\therefore Number of girls who like only r	angoli = n(B) - n (A∩B) = 40 - 25 = 15.
	∴ Answer is (c).	
12.	n (A∩B) = n (A) + n(B) - n (A U B)	= 70 + 60 - 100 = 20.
	∴ Answer is (d).	*
13.	$A \times B = \{(1, 3) (1, 4), (2, 3), (2, 4),$	(3, 3), (3, 4)}

 $\mathsf{A}\times\mathsf{C}{=}\left\{(1,\,1)\,(1,\,3),\,(1,\,5),\,(2,\,1),\,(2,\,3),\,(2,\,5),\,(3,\,1),\,(3,\,3),\,(3,\,5)\right\}$

(A x B) ∩ (A x C)= {(1, 3) (2, 3), (3, 3)} ∴ Answer is (a).

- 14. A \cap (AUB) ' = A \cap (A' \cap B') = (A \cap B') \cap B' = $\phi \cap$ B' = ϕ \therefore Answer is (b).
- 15. Let x, be the number of essays. If each student writes one essay then number of students = 60x. But each student writes 5 essays.
 - \therefore Number of essays = $\frac{60x}{5}$
 - Now, $\frac{60x}{5} = 300$ (given) $\therefore x = \frac{1500}{60} = 25$
 - \therefore Number of essays = 25
 - ∴ Answer is (b).

Grooming the **Leader**

Ξ

2. Surds and Indices

Import	tant Facts and F	ormulae			
Ι.	Laws of Indice	s:			
	1] $a^m \times a^n = a^n$	a^{m+n}	$2]\frac{a^m}{a^n} = a^{m-n}$		3] $(a^m)^n = a^{mn}$
	$4] (ab)^n = a^n$	b^n	$5]\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$		6] $a^0 = 1$
II.	Surds: Let a be surd of order r	e a rational numl n.	per and n be a po	ositive ir	teger such that $a^{\frac{1}{n}} = \sqrt[n]{a}$ is irrational. Then, is called a
III.	Laws of Surds				
	1] $\sqrt[n]{a} = a^{\frac{1}{n}}$		2] $\sqrt[n]{ab} = \sqrt[n]{a}$	$\sqrt[n]{b}$	3) $n \left[\frac{a}{r} = \frac{n\sqrt{a}}{n\sigma} \right]$
	4] $\left(\sqrt[n]{a}\right)^n = a$		$51 \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{\sqrt[n]{a}}$	ā	$\int \int \frac{1}{\sqrt{a}} dx = \sqrt[n]{a^m}$
IV.	If a number ec	ual to the avera	ge is added to a	group, t	heir average remains the same.
Multip	le Cho <mark>ice Q</mark> uest	tion			
1.	The value of (2	256) ⁵ / ₄ is:			
	a) 512	b) 984	c) 1024	d) 103	2
2.	The value of ($\sqrt{8}$) ^{$\frac{1}{3} is:$}			
	a) 2	b) 4	c) $\sqrt{2}$	d) 8	
3.	The value of [(10) ¹⁵⁰ ÷ (10) ¹⁴⁶] i	s:		
	a) 1000	b) 10000	<mark>c) 100000</mark>	d) 10⁵	
4.	(2.4×10 ³) (8 <mark>×1</mark>	0 ⁻²) = ?			
	a) 3×10 ⁻⁵	b) 3×10⁴	c) 3×10 ⁵	d) 30	
5.	(1000) ⁷ ÷ 10 ¹⁸	= ?			
	a) 10	b) 100	c) 1000	d) 100	00
6.	(0.04) ^{-1.5} = ?				
	a) 25	b) 125	c) 250	d) 625	
7.	$(17)^{3.5} \times (17)^{7}$	= (17) ⁸	Groc	ominc	1 the
	a) 2.29	b) 2.75	c) 4.25	d) 4.5	
8.	49 X 49 X 49 X 4	49 = 7	c) 9	d) 16	
٩	a) 4 The value of (S	$S^{-25} - S^{-26}$ is:	0,0	u) 10	
5.	a) 7x8 ⁻²⁵	b) 7x8 ⁻²⁶	c) 8x8 ⁻²⁶	d) Nor	e of these
10.	lf 5 ^a = 3125, th	ien the value of !	5 ^(a-3) is:	.,	
	a) 25	b) 125	c) 625	d) 162	5
11.	If $\sqrt{2^n}$ = 64, th	en the value of r	n is:		
	a) 2	b) 4	c) 6	d) 12	
12.	If m and n are	whole numbers	such that m ⁿ = 1	.21, ther	the value of (m - 1) ⁿ⁺¹ is:
	a) 1	b) 10	c) 121	d) 100	0
13.	$\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(n-m)}}$	$\frac{1}{a^{(m-n)}} = ?$			

a) 0 b)
$$\frac{1}{2}$$
 c) 1 d) a^{mn}
14. If $2^{n} \neq \sqrt{32}$, then x is equal to:
a) 5 b) 3 c) $\frac{1}{3}$ d) $\frac{1}{3}$
15. If $2^{n} x B^{\frac{1}{2}} = 2^{\frac{1}{2}}$, then x is equal to:
a) $\frac{1}{5}$ b) $-\frac{1}{5}$ c) $\frac{2}{5}$ d) $-\frac{2}{5}$
16. If $a^{n} = b$, $b^{n} = c$ and $c^{n} = a$, then the value of try is:
a) 0 b) 1 c) $\frac{1}{2}$ d) $\frac{1}{2}^{\frac{1}{2}}$ d) $\frac{1}{2}^{\frac{1}{2}}$
17. The largest number from among $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$ d and is:
a) $\sqrt{2}$ b) $\sqrt{3}$ c) $\sqrt{4}$ d) All are equal
18. If $x^{n} = 5+2\sqrt{6}$, then $\frac{1}{\sqrt{n}}$ is equal to:
a) $\sqrt{2}$ b) $2\sqrt{2}$ c) $\sqrt{3}$ d) $2\sqrt{3}$
19. If $3^{(n+1)} = 27$ and $3^{(n+1)} = 243$, then x is equal to:
a) $\sqrt{2}$ b) $2\sqrt{2}$ c) $\sqrt{3}$ d) $2\sqrt{3}$
19. If $3^{(n+1)} = 27$ and $3^{(n+1)} = 243$, then x is equal to:
a) 0 b) 2 c) 4 d) 6
20. If a , b , c are real numbers, then the value of $\sqrt{a^{n-1}b}$, $\sqrt{b^{n-1}c}$, $\sqrt{c^{-1}a}$ is:
a) abc b) \sqrt{abc} c) $\frac{1}{a^{\frac{1}{ab}}}$ d) 1
Answer Keys
1. $(c 2, c) \frac{3}{2}$, $(4^{n})^{\frac{1}{2}} = 4^{\frac{1}{2}} x^{\frac{1}{2}} = 4^{\frac{1}{2}} 5 = c 23^{\frac{1}{2}} = 2^{\frac{1}{2}} = \sqrt{2}$.
3. (10) $\frac{150}{4} + (10)^{\frac{150}{2}} = (10)^{\frac{150}{2}} = 4^{\frac{1}{2}} 5 = 1024$.
2. $(\sqrt{8})^{\frac{1}{2}} = (\frac{1}{2})^{\frac{1}{2}} = (\frac{1}{2})^{\frac{1}{2}} = (25)^{\frac{1}{2}} = 2^{\frac{1}{2}} x^{\frac{1}{2}} = 2^{\frac{1}{2}} = \sqrt{2}$.
3. (10) $\frac{150}{4} + (10)^{\frac{150}{2}} = (\frac{1}{20})^{\frac{1}{2}} = (23)^{\frac{1}{2}} = 2^{\frac{1}{2}} x^{\frac{1}{2}} = (10)^{\frac{150}{2}} = 10^{2}$.
5. $(1000)^{n} + 10^{(n)} = \frac{(100)^{\frac{1}{2}}}{(10)^{\frac{1}{2}}} = (10)^{\frac{1}{2}} = 10^{\frac{1}{2}} = 10^{\frac{1}{2}}$.
7. Let $(12)^{\frac{1}{2}} \times (12)^{\frac{1}{2}} = 17^{n}$ Then, $(12)^{\frac{1}{2}} x^{\frac{1}{2}} = 5^{\frac{1}{2}} = 125$.
7. Let $(12)^{\frac{1}{2}} \times (12)^{\frac{1}{2}} = 17^{n}$ Then, $(12)^{\frac{1}{2}} x^{\frac{1}{2}} = 5^{\frac{1}{2}} = 5^{\frac{1}{2}} = 125$.
7. Let $(12)^{\frac{1}{2}} \times (12)^{\frac{1}{2}} = 2 \otimes 2^{\frac{1}{2}} = 2^{\frac{1}{2}} \otimes \frac{\pi}{2} = 6 \Leftrightarrow n = 12$.
19. $9^{\frac{1}{2}} x^{\frac{1}{2}} x^{\frac$

3. Ratio and Proportion

Important Facts and Formulae

- RATIO: Relation obtained by comparing two quantities by division is known as Ratio. ١.
 - 1] The ratio of two quantities a and b in the same units, is the fraction $\frac{a}{b}$ and we write it as a : b.
 - 2] In the ratio a : b, we call a as the first term or antecedent and b, the second term or consequent.

Ex. The ratio 5: 9 represents $\frac{5}{6}$ with antecedent = 5, consequent = 9.

3] Rule: The multiplication or division of each term of a ratio by the same non-zero number does not affect the ratio.

Ex. 4 : 5 = 8 : 10 = 12 : 15 etc. Also 4 : 6 = 2 : 3.

- 4] A ratio is a number, it has no unit of measurement.
- 5] Second term 'b' in a : b is always non-zero real number.
- 6] The ratio of a to b is written as a : b.

II. **Properties of Ratio:**

1] The ratio remains unchanged if both the terms of the ratio are multiplied or divided by same non-zero real number. $\frac{a}{b}$ and $\frac{ak}{bk}$ are equivalent; and $\frac{a}{b}$ and $\frac{a \div k}{b \div k}$ are equivalent.

2] If
$$a \times d > b \times c$$
 then, $\frac{a}{b} > \frac{c}{d}$, $b > 0$, $d > 0$

3] If a x b < b x c then,
$$\frac{a}{2} < \frac{c}{2}$$
, b > 0, d> 0

4] If a
$$\frac{x}{x} d = \frac{b}{x} x c$$
 then $\frac{a}{b} = \frac{c}{d}$, b > 0, d> 0

Properties of Equal Ratios: III.

- 1] $\frac{a}{b} = \frac{c}{d} \frac{b}{b} = \frac{d}{c}$ this property is called Invertendo.
- 2] $\frac{a}{b} = \frac{c}{d} \text{ then } \frac{a}{c} = \frac{b}{d}$ (Alternendo)
- 3] $\frac{a}{b} = \frac{c}{d}$ then $\frac{a+b}{b} = \frac{c+d}{d}$ (Componendo)

4]
$$\frac{a}{b} = \frac{c}{d}$$
 then $\frac{a-b}{b} = \frac{c-u}{d}$ (Dividendo)

5] $\frac{a}{b} = \frac{c}{d}$ then $\frac{a+b}{a-b} = \frac{c+d}{c-d}$ (Componendo - Dividendo)

Theorem on Equal ratios: IV.

If $\frac{a}{b} = \frac{c}{d}$ then $\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$

COMPOUNDED RATIOS: V.

- 1] The compounded ratio of the ratios (a : b), (c : d), (e : f) is (ace : bdf).
- 2] Duplicate ratio of (a: b) > (c: d) $\Leftrightarrow \frac{a}{b} > \frac{c}{d}$.
- 3] Sub-duplicate ratio of (a : b) is $(\sqrt{a} : \sqrt{b})$
- 4] Triplicate ratio of (a : b) is (a³ : b³).
- 5] Sub-triplicate ratio of (a: b) is $\left(a^{\frac{1}{3}} : b^{\frac{1}{3}}\right)$

VI. **PROPORTION:** The equality of two ratios is called Proportion.

If a: b = c: d, we write, a : b :: c : d and we say that a, b, c, d are in proportion. Here a and d are called extremes, while b and c are called mean terms.

Product of means = Product of extremes.

Thus, a:b :: c:d \Leftrightarrow (bxc) = (a×d)

VII. **Continued Proportion:**

1] a, b, c, d, e.... are said to in continued proportion if $\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{d}{e}$

2] If a, b, c are in continued proportion, then product of extreme is equal to square of mean = $b^2 = ac$.

Solved Examples

	1)	Express the ratio 25: 75 in the simplest form.
	Sol.	HCF of 25 and 75 is 25. $25:75 = \frac{25}{25}:\frac{75}{25} = 1:3$
	2)	a : b = 2: 3 and b : c = 9 : 17. Find a : b : c.
	Sol.	a : b = 2 : 3 or a : b = 2 x 3 : <mark>3 x 3 = 6 : 9 and b : c =</mark> 9 : 17
	3)	The ratio of two numbers is 4 : 5. If the sum of these numbers is 70, find the numbers.
	Sol.	Let the two numbers be 4x and 5x. Then $4x + 5x = 70 \implies 9x = 70 \therefore x = \frac{70}{9}$
		$\therefore \text{ First number is } 4 \times \frac{70}{9} = \frac{280}{9} \therefore \text{ Second number is } 5 \times \frac{70}{9} = \frac{350}{9}.$
	4)	The ratio of two quantities is 5 : 9. If the first quantity is 112, find the other quantity.
	Sol.	Let the other quantity is x, then $5:9 = 112: x \Rightarrow \frac{5}{9} = \frac{112}{x} \Rightarrow x = \frac{112 \times 9}{5} \therefore x = 201.6$
	5)	Chunnu has Rs 5, Rs 2 and Rs 1 coins in the ratio of 1:2:3 amounting to Rs 120. Find the number of coins of each type.
	Sol.	Let the number of Rs 5, Rs 2 and Rs 1 coins be x, 2x and 3x respectively.
		Total value of these coins = $5 \times x + 2 \times 2x + 1 \times 3x = 12x$ Then, $12x = 120$ $\therefore x = 10$
		Number of Rs 5 coins = 10, Number of Rs 2 coins = 20, Number of Rs 1 coins = 30
	6)	If 4 is subtracted from each of the ratio 5 : 6, the ratio becomes 4 : 5. Find the numbers.
	Sol.	Let the required numbers be 5x and 6x, then, $\frac{5x-4}{6x-4} = \frac{4}{5}$, 25x - 20 = 24x - 16, x = 4
		T <mark>he re</mark> quired numbers are 5 x 4 = 20 and 6 × 4 = 24
	7)	Fi <mark>nd the</mark> mean proportional to 2(a + b) and 8(a + b).
	Sol.	Required mean proportional = $\sqrt{2(a + b)8(a + b)} = 4(a + b)$
	8)	A mixture contains water and alcohol in the ratio of 3 : 1. If it contains 0.25 L of alcohol, find the quantity of water in the mixture.
	Sol.	$\frac{3}{1} = \frac{x}{0.25}$, x = 0.75 L
	9)	The ratio of angles of a quadrilateral is 2:3:4: 6. Find the greatest angle.
	Sol.	Let the angles of a quadrilateral be 2x, 3x, 4x and 6x.
		Then, 2x + 3x + 4x + 6x = 360° (:: Sum of angles of a quadrilateral is 360°)
		$15x = 360^{\circ}$ $\therefore x = 24^{\circ}$ Grooming the
		Largest angle is 6 × 24° = 144° Leader
	10)	If $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ then find the value of $\frac{x+y+z}{x}$
	Sol.	Given that $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$. Let $\frac{x}{1} = \frac{y}{2} = \frac{z}{3} = k$ $\therefore x = k, y = 2k, z = 3k$
		$\therefore \frac{\mathbf{x} + \mathbf{y} + \mathbf{z}}{\mathbf{x}} = \frac{\mathbf{k} + 2\mathbf{k} + 3\mathbf{k}}{\mathbf{k}} = \frac{6\mathbf{k}}{\mathbf{k}} = 6.$
	11)	If $2x + 3y : 3x + 4y = 5 : 7$. Find x : y.
	Sol.	$\frac{2x+3y}{3x+4y} = \frac{4}{5} \implies 14x+21y = 15x+20y \implies x = y \therefore x : y = 1 : 1$
Multip	le Choi	<u>ce Questions</u>
1.	lf x : y	= 3 : 4 and y : z = 8 : 9, then find the value of x : y : z
	a) 3 : 4	b) 1:2:3 c) 7:12:17 d) 6:8:9
2.	lf 4x =	5y and 7y = 9z, then x : y : z =
	a) 45 :	36 : 28 b) 44 : 33 : 28 c) 28 : 36 : 45 d) 36 : 28 : 45

3.	If 30% of x = 20% of y, then find the value of x : y.
	a) 1:3 b) 3:2 c) 3:1 d) 2:3
4.	The mean proportion of 0.32 and 0.02 is
	a) 0.06 b) 0.43 <mark>c)</mark> 0.32 d) 0.08
5.	If AB = 36, which of the following is correct?
	a) A : 9 = 4 : B b) 9 : A = 4 : B c) A : 17 = B : 7 d) A : 6 = B : 6
6.	A bag contains Rs 1, Rs 0.50 and Rs 0.25 coins in the ratio of 8 : 9 : 11. If the total money in the bag
	is Rs 366, find the number of Rs 0.25 coins.
	a) 264 b) 364 c) 241 d) 245
7.	Tanvi obtained 12 marks more than that of Ayushi. If the ratio of their marks is 3 : 4, find the sum of
	their marks.
	a) 96 b) 72 c) 84 d) 108
8.	In a school, the ratio of boys and girls is 4 : 5. When 100 girls leave the school, the ratio becomes
	a) 1800 b) 1200 c) 1000 d) 1500
9	A cat takes 5 leans of every 4 leans of dog, but 3 leans of the dog are equal to 4 leans of the cat
5.	What is the ratio of the speeds of the cat to that of the dog?
	a) 11 <mark>: 15 b) 15 : 11 c) 16 : 15 d) 15 : 16</mark>
10.	A sum <mark>of Rs</mark> 2186 is distributed among A, B and C. If money given to them is decr <mark>ease</mark> d by Rs 26, Rs
	28 an <mark>d Rs 3</mark> 2, respectively, then they have money in the ratio 9 : 13 : 8. What is <mark>the a</mark> mount given to
	A?
	a) Rs 575 b) Rs 640 c) Rs 656 d) Rs 672
11.	$If \frac{2x^2 + 3y^2}{2x^2 - 3y^2} = \frac{125}{71}, \frac{4x + 3y}{4x - 3y} = ?$
	a) $\frac{17}{17}$ b) $\frac{19}{19}$ c) $\frac{23}{23}$ d) $\frac{5}{23}$
	x'_{35} x'_{37} y'_{19} x'_{3}
12.	If 5x - 13y = 3x - 8y, then $\frac{x + y}{x^2 - y^2}$ = ?
	a) $\frac{29}{21}$ b) $\frac{98}{27}$ c) $\frac{3}{5}$ d) $\frac{19}{37}$
13.	If 2, b & 8 are in continued proportion find b.
	a) 4 b) 6 c) 8 d) 2
14.	Find the fourth proportional to 15, 20, 24.
	a) 32 b) 16 c) 18 Groord) sig the
15.	4a ² b, 8ab ² , m & 2a ³ are in proportion, Express 'm' in terms of a and b.
	a) $\frac{a^3}{a^5}$ b) $\frac{a^2}{a^4}$ c) $\frac{a^4}{a^5}$
16	b = b = b Which number is to be added to each of 4, 10, 12, 24 so that resulting numbers are in proportion?
10.	which number is to be added to each of 4, 10, 12, 24 so that resulting numbers are in proportion: a > b > b > b > b > b > b > b > b > b >
17	What is the fourth proportional of the $14, 21, 4$
17.	a = b + b + b + c + c + d +
18	Find x if $4.8 \pm 0.0 \times 8.85$ are in proportion
10.	a 4 2 $b 3 8 $ $c 6 8 $ $d 2 4$
10	Eive numbers are in continued proportion. The first term is 5 & the last term is 80. Find the
т <i>э</i> .	numbers.
	a) 2, 7, 17, 37, 77 b) 5, 10, 20, 40, 80 c) 15, 20, 30, 60, 120 d) 10, 15, 25, 45, 90
20.	Find the value of x in, $\frac{x^2 + 12x - 20}{x^2 + 8x + 12} = \frac{x^2 + 8x + 12}{x^2 + 8x + 12}$
	3x-5 $2x+3$

	a) 2 or 8	b) 0 or 8	c) 2 or 8	d) 0 or 6
21.	If A : B = 5 : 7	and B : C = 6 : 1	1, then A : B :	C is:
	a) 55 : 77 : 66	b) 30 : 42 : 77	c) 35 : 49 : 42	d) None
22.	If A : B = 3 : 4	and B : C = 8 : 9	, then A : C is:	
	a) 2 : 7	b) 4 : 15	c) 8 : 15	d) 15 : 4
23.	If A : B = 8 : 15	5, B : C = 5 : 8 ar	nd C : D = <mark>4 : 5</mark> ,	then A : D is equal to:
	a) 1:3	b) 3 : 2	c) 2 : 3	d) 1 : 2
24.	If A : B <mark>: C</mark> = 2	: 3 : 4, then $\frac{A}{R}$:	$\frac{B}{C}$: $\frac{C}{A}$ is equal to	o:
	a) 4:9:16	b) 8:9:12	c) 8:9:16	d) 8:9:24
25.	If A : B = 2 : 3	, B : C = 4 : 5 an	d C : D = 6 : 7,	then A : B : C : D is:
	a) 16:22:30:3	5 b) 16:2	24:15:35	c) 16:24:30:35 d) 18:24:30:35
26.	If $2A = 3B = 40$	C, then A : B : C	is:	
	a) 2 <mark>:3:4</mark>	b) 4 : 3 : 2	c) 6 : 4	i : 3 d) 20: 15: 2
27.	If 2A = 3B and	l 4B = 5C, then /	A : C is:	
	a) 4 <mark>: 3</mark>	b) 8 : 15	c) 15 :	8 d) 3 : 4
28.	The ratio of 4	^{3.5} : 2 ⁵ is same a	is:	
	a) 2:1	b) 4:1	c) 7:5	d) 7:10
29.	$If^{\frac{1}{2}}: \frac{1}{2} = \frac{1}{2}: \frac{1}{2}$	- then the value	e of x is:	
-	5 x x 125	b) 2	c) 2 5	d) 3 5
30	$11075 \cdot x \cdot 5$	· 8 then y is ea	ual to:	4,5.5
50.	a) 1 12	b) 1.20	$c) 1 2^{c}$	d) 1 30
31	If 15% of $x = 2$	0% of y then y	· v is:	
51.	$a) 3 \cdot 4$	$b) 4 \cdot 3$	$() 17 \cdot 16$	d) 16 : 17
32	$f_{1} = f_{1} = f_{1$	w then x : y is:	c) 17 . 10	
52.	$(x + y) = -\frac{1}{2}$	b) 1.2	c) 1·1	d) 1:4
22	The salaries o	f A B C are in t	the ratio 2:3:5	If the increments of 15% 10% and 20% are allowed
55.	respectively in	n their salaries,	then what will	be the new ratio of their salaries?
	a) 3:3:10	b) 10:11:20	c) 23:33:60	d) None
34.	If 76 is divided	d into four parts	s proportional	to 7, 5, 3, 4, then the smallest part is:
	a) 12	b) 15	c) 16 Groo	d) 19, the
35.	Two numbers	are in the ratio	<mark>3: 5. If 9 is su</mark> t	otracted from each, the new numbers are in the ratio
	12:23. The sm	naller number is	;; ^L	eader
	a) 27	b) 33	c) 49	d) 55
36.	Two numbers	are in the ratio	1:2. If 7 is add	led to both, their ratio changes to 3:5. The greatest
	a) 24	b) 26	c) 28	d) 32
37	The ratio of th	aree numbers is	3.4.7 and the	ir product is 18144. The numbers are:
57.	a) 9, 12, 21	b) 15, 20, 25	c) 18, 24, 42	d) None of these
38.	Salaries of Ra	vi and Sumit are	e in the ratio 2	: 3. If the salary of each is increased by Rs 4000, the new
	ratio become	s 40:57. What is	s Sumit's prese	nt salary?
	a) Rs 17,000	b) Rs 20,000	c) Rs 25,500	d) None of these
39.	The sum of th	ree numbers is	98. If the ratio	of the first to the second is 2: 3 and that of the second
	to the third is	5 : 8, then the	second numbe	
	a) 20	DE (a	c) 48	a) 58 40

40.	Two numbers is:	are respective	ly 20% and 50%	6 more than a third n	umber. The ratio of the 2 numbers
	a) 2:5	b) 3:5	c) 4:5	d) 6:7	
41.	Two whole nu	mbers whose s	sum is 72 canno	o <mark>t b</mark> e in the ratio:	
	a) 5:7	b) 3:5	c) 3:4	d) 4:5	
42.	Seats of Math increase these	ematics, Physic e seats by 40%,	cs and Biology i 50% and 75%	n a school are in the respectively. What w	ratio 5:7:8. There is a proposal to ill be the ratio of increased seats?
40	a) 2:3:4	D) 6:7:8	C) 6:8:9	d) None of the	iese
43.	in a ratio, whi	ch is equal to 3	:4, If the antec	d) 24	consequent Is:
A A	d) 9 The prices of	D) 10	C_{1} 20	u) 24	tor costs Dr 8000 more than a TV
44.	set, then the r	orice of a T.V. s	et is:	ratio 7:5. If the scool	ter costs Rs 8000 more than a 1.v.
	a) R <mark>s 20,000</mark>	b) Rs 24,000	c) Rs 28,000	d) Rs 32,000	
45.	The <mark>ages</mark> of A ages are:	and B are in th	e ratio 3: 1. Fifi	teen years hence, the	e ratio will be 2: 1. Their present
	a) 3 <mark>0 yrs,</mark> 10 y	rs	b) 45 yrs, 15 y	rs c) 21 yrs, 7 y	vrs d) 60 yr <mark>s, 20</mark> yrs
46.	The average a youn <mark>gest b</mark> oy	ge of three boy is:	/s is 25 years a	nd their ages are in th	ne proportion 3: 5: 7. The age of the
	a) 21 <mark>years</mark>	b) 18 years	c) 15 years	d) 9 years	
47.	The sp <mark>eeds</mark> of the same distance	three cars are ance is:	in the ratio 5:4	:6. The ratio betwee	n the time taken by them to travel
	a) 5:4:6	b) 6:4:5	c) 10:12:15	d) 12:15:10	
48.	Zinc and copp kg of zinc has	er are melted t been co <mark>nsume</mark>	ogether in the d in it?	ratio 9:11. What is th	ne weight of <mark>melte</mark> d mixture, if 28.8
	a) 58 kg	b) 60 k	g	c) 64 kg	d) 70 kg
49.	A and B are tw respectively. I	vo alloys of golo f equal quantit ill be:	d and copper p ies of the alloy:	repared by mixing me s are melted to form	etals in the ratio 7:2 and 7:11 a third alloy C, the ratio of gold and
	a) 5·7	b) 5:9	c) 7:5	d) 9·5	
50.	Which of the t	following ratios	s is greatest?		
	a) 7:15	b) 15:23	c) 17:25	d) 21:29	
51.	What is the ra	tio of 2 metres	with 150 cm in	n its simplest form	
	a) 4:3	b) 3:4	c) 6:7	d) 3:5	
52.	What is the ra 3600 grams.	tio does the se	cond quantity	bears with the first q	uantity in its simplest form 2.4 kg,
	a) 3:5	b) 4:3	c) 3:2	d) 5:7	
53.	Present age of of their present	f Gaurav is 7 ye nt ages.	ears 3 months &	k present age of Rohi	t is 12 years 1 month find the ratio
	a) 2:3	b) 1:3	c) 3:5	d) 5:7	
54.	Two numbers numbers.	are in the ratio	3: 5. If 7 is add	ded to each term the	n ratio becomes 11: 16. Find
	a) 13, 24	b) 15 <i>,</i> 25	c) 16, 26	d) 24, 34	
55.	What is the ra	itio of second q	uantity to first	in its simplest form,	52 cm, 117 cm
	a) 7:4	b) 9:4	c) 7:5	d) 5:32	
56.	If the ratio of	the two numbe	ers is 3: 5 and t	heir sum is 360 find t	hem.
	a) 135 & 225	b) 95 & 185	c) 155 & 245	d) 165 & 255	

57. The measures of angles of the quadrilateral ABCD are in the ratio 2:3:4:1 quadrilateral.

d) 23:9

a) parallelogram b) rhombus c) trapezium d) Square

58. If $\frac{p}{q} = \frac{5}{4}$ then $\frac{3p+2q}{3p-2q} = ?$ a) 23:7 b) 43:9 c) 63: 11 59. If $\frac{a}{b} = \frac{5}{6}$ then $\frac{6a-5b}{2a+3b} = ?$

a) 5 b) 9 c) 0 d) 6 60. If $\frac{x}{y} = \frac{5}{3}$ then $\frac{2x^2 + 3y^2}{2x^2 - 3y^2} = ?$

c) $\frac{99}{14}$ d) $\frac{55}{23}$

a) $\frac{66}{17}$ b) $\frac{77}{23}$ Answer Keys

1. d	2. a	3. d	4. d	5. a	6. a	7. c	8. b	9. d	10. c
11. <mark>b</mark>	12. a	13. a	14. a	15. c	16. c	17. a	18. c	19. b	20. b
21. <mark>b</mark>	<mark>2</mark> 2. c	23. b	24. c	25. c	26. c	27. с	28. b	29. c	30. b
31. b	<mark>3</mark> 2. a	33. c	34. a	35. b	36. c	37. c	38. d	39. b	40. c
41. c	<mark>42</mark> . a	43. b	44. c	45. b	46. c	47. d	48. c	49. c	50. d
51. a	52. c	53. c	54. b	55. b	56. a	57. c	58. a	59. c	60. b

HINTS AND SOLUTIONS

1. Given that x:y = $3:4 = (3 \times 2):(4 \times 2) = 6:8$ y:z = 6:<mark>9</mark> ∴ x:y:z = 6:8:9 The consequent of the first ratio is equal to the antecedent of the second ratio. Given that 4x = 5y $\therefore \frac{x}{y} = \frac{5}{4}$ Also, $7y = 9z \div \frac{y}{z} = \frac{9}{7}$ $\therefore x:y = 5:4 = (5 \times 9):(4 \times 9) = 45:36$ 2. y:z = 9:7 = (9×4):(7 × 4) = 36:28 ∴ x:y:z = 45:36:28 Given that 30% of x = 20% of y $\Rightarrow \frac{x}{y} = \frac{20}{30} = \frac{2}{3} \Rightarrow x:y = 2:3$ 3. Let x be the mean proportion of 0.32 and 0.02. 4. $\frac{0.32}{x} = \frac{x}{0.02}$ \Rightarrow x² = 0.0024 \Rightarrow x = 0.08 $\therefore AB = 4 \times 9$ $\frac{A}{9} = \frac{4}{8}$ AB = 36A:9 = 4:B 5. Let marks of Tanvi be 3x and marks of Ayushi be 4x. As given in question, 4x - 3x = 12 7. Sum of their marks = $4x + 3x = 7x = 7 \times 12 = 84$ ∴ x = 12 Let the number of boys be $\frac{4x}{5x-100} = \frac{6}{7}$ 8. $\Rightarrow 28x = 6 (5x-100) \Rightarrow 28x = 30x - 600$ $\Rightarrow 2x = 600$ ∴ x = 300 \therefore Number of boys = 4x = 4 × 300 = 1200 4 leaps of cat = 3 leaps of dog \Rightarrow 1 leap of cat = $\frac{3}{4}$ leap of dog 9. Cat takes 5 leaps for every 4 leaps of dog : Required ratio = $(5 \times \text{cat's leap})$: $(4 \times \text{dog's leap}) = (5x \frac{3}{4} \text{dog's leap})$: (4x dog's leap) = 15:165x - 13y = 3x - 8y $\therefore 5x - 3x = 13y - 8y$ $\therefore 2x = 5y$ $\therefore \frac{x}{y} = \frac{5}{2}$ $\therefore \frac{x^2}{y^2} = \frac{25}{4}$ 12.

 $\therefore \frac{x^2 + y^2}{x^2 - y^2} = \frac{25 + 4}{25 - 4} \qquad \dots [Componendo - Dividendo] \qquad \therefore \frac{x^2 + y^2}{x^2 - y^2} = \frac{29}{21} \qquad \therefore \text{ Answer is (a).}$

16. Let required number is x.
∴ The numbers (4 + x), (10 + x), (12 + x), (24 + x) are in proportion

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \frac{44x}{104x} = \frac{124x}{104x} & \therefore (4+x)(24+x) = (10+x)(12+x) & \therefore 96 + 28x + x^2 = 120 + 22x + x^2 \\ \therefore 6x = 24 & \therefore x = 4 & \therefore Answer is (c). \end{array} \end{array}$$
19. Let five numbers in continued proportion are a, ak, ak², ak³, ak⁴, a = 5, ak⁴ = 80.

$$\begin{array}{l} \frac{x^2}{6a} = \frac{80}{6} = 16 & \vdots k = 2 & \therefore ak = 5 \times 2 = 10 & \therefore ak^2 = 5 \times 4 = 20 & \therefore ak^3 = 5 \times 8 = 40 \\ \therefore k^2 = 16 & \therefore k = 2 & \therefore ak = 5 \times 2 = 10 & \therefore ak^2 = 5 \times 4 = 20 & \therefore ak^3 = 5 \times 8 = 40 \\ \therefore k^2 = 16 & \vdots k = 2 & \therefore ak = 5 \times 2 = 10 & \vdots ak^2 = 5 \times 4 = 20 & \therefore ak^3 = 5 \times 8 = 40 \\ \hline x = 16 & 0 & x = 2 & 2x + 3 & \vdots & Answer is (b) \end{array}$$
20.
$$\begin{array}{l} \frac{x^4 + 12x - 20}{3x - 5} & = \frac{2^4 + 8x + 12}{2x + 3} & (Dividendo) \\ \frac{x^4 + 12x - 20 - 12x - 20}{3x - 5} & \frac{2^4 + 8x + 12 - 4(2x + 3)}{2x + 3} & (Dividendo) \\ \frac{x^4 + 12x - 20 - 12x - 20}{3x - 5} & \frac{2^4 + 8x + 12 - 4(2x + 3)}{2x + 3} & x = 0, \text{ or } x = 8 & \therefore \text{ Answer is } (b). \end{array}$$
21.
$$\begin{array}{l} AB = 5x7, BC = 611 = (6 \times \frac{7}{6}); (11 \times \frac{7}{6}) = 7, \frac{77}{6} & \\ \therefore AB = 5x7, BC = 611 = (6 \times \frac{7}{6}); (11 \times \frac{7}{6}) = 7, \frac{77}{6} & \\ \therefore AB = 5, 7, BC = 611 = (6 \times \frac{7}{6}); (11 \times \frac{7}{6}) = 7, \frac{77}{6} & \\ \therefore AB = 5, 7, BC = 6312 & \frac{1}{2} & \frac{$$

34. Given ratio = 7:5:3:4, Sum of ratio terms = 19. Smallest part = $\left(76 \times \frac{3}{19}\right)$ = 12

35. Let the numbers be 3x and 5x. Then,
$$\frac{5x-3}{5x-2} = \frac{12}{2} \Rightarrow 23(3x \cdot 9) = 12(5x \cdot 9) \Rightarrow 9x = 99 \Rightarrow x = 11$$

∴ The smaller number = (3 x 11) = 33.
36. Let the numbers be x and 2x. Then, $\frac{5x+7}{2x+7} = \frac{3}{5} \Rightarrow 5(x+7) = 3(2x+7) \Rightarrow (x = 14)$.
∴ Greatest number = 28.
37. Let the numbers of Ravi and Sumit be Rs 2x and Rs 3x respectively. Then,
 $\frac{2x+4000}{3x+4000} = \frac{40}{57} \Rightarrow 57(2x+4000) = 40(3x+4000) \Rightarrow 6x = 68000 \Rightarrow 3x = 34000$
Sumit's present salary = (3x + 4000) = 8x (34000+4000) = 8x 33,000.
39. Let the three parts be A, B, C. Then,
A:B = 2.3 and B:C = 5.8 = $(5 \times \frac{2}{3})$; $(8 \times \frac{2}{5}) \Rightarrow \Rightarrow A:B:C = 2.3; \frac{24}{5} = 10:15:24 \Rightarrow B = $(98 \times \frac{15}{100}) = 30$
40. Let the third number be x.
Then, first number = 120% of x = $\frac{120x}{100} = \frac{5x}{5}$, second number = 150% of x = $\frac{150x}{100} = \frac{2x}{2}$.
∴ Ratio of first two numbers $\frac{5x}{5} = \frac{3x}{2} = 12x:15x = 4x.5$.
41. The sum of the ratio terms must divide 72. So, the ratio cannot be 3:4.
42. Originally, let the number of seats for mathematics, Physics and Biology be 5x, x and 8x
respectively. Number of increased seats are (140% of 5x), (150% of 7x) and (175% of 8x)
i.e. $(\frac{140}{100} \times 5x)$, $(\frac{15x}{100} \times 7x)$, $(\frac{17x}{100} \times 8x)$ i.e. $7x, \frac{22}{2x}$ and 14x.
∴ Required ratio = 7x; $\frac{24}{2x}$: $14x = 14x:213x:28x = 2:3:4.$
43. We have $\frac{3}{4} = \frac{27}{4}$ $\Rightarrow 3x = 48$ $\Rightarrow x = 16$ \Rightarrow Consequent = 16.
44. Let the price of a scooter and a T.V. set be 7x and 5x respectively.
Then, $7x - 5x = 8000 \Rightarrow 2x = 8000 \Rightarrow x = 4000$.
 \Rightarrow Price of a T.V. set $= 8x (7x4000) = 8x 2800$.
45. Let the ages of A and Be 3x years and x years respectively.
Then, $\frac{3x+130}{14x} = \frac{2}{4}$ $\Rightarrow 2x+30 = 3x+15$ $\Rightarrow x = 15$.
46. Total age of 3 boys = (25x3) years = 75 years. Ratio of their ages = 3:5;7.
Age of the youngest = $(75 \times \frac{3}{15})$ years = 15 years.
Age of the youngest = $(75 \times \frac{3}{15})$ years = 15 years.
47. Satio of their taken $=\frac{3}{4}; \frac{1}{4}; \frac{1}{6} = 12:15:10$.
Call of their taken $=\frac{3}{6}; \frac{1}{6}; \frac{1}{5} = 0.58$
51. Total a$

 $\therefore \frac{2x^2 + 3y^2}{2x^2 - 3y^2} = \frac{50 + 27}{50 - 27} \quad \dots [Componendo-Dividendo]$ $\therefore \frac{2x^2 + 3y^2}{2x^2 - 3y^2} = \frac{77}{23}$

 \therefore Answer is (b).

SAHAKAR DEFENCE CADEM

Grooming the **Leader**

4. Linear Equation in Two Variables Important Facts and Formulae

Introduction:

I

The general form of a linear equation in one variable is ax + b = 0, where a and b are real numbers, $a \neq 0$ and x is a variable.

A value of the variable which satisfies the given equation is called a solution of the equation. e.g., if we put 3 in the equation 4x = x + 9, then LHS = $4 \times 3 = 12$ and RHS = 3 + 9 = 12.

 \therefore LHS = RHS.

We know that the solution of the given equation will not change,

i) if the same number is added to or subtracted from both the sides of the equation

ii) if both the sides of the equation are multiplied or divided by the same non-zero number.

II Linear Equation in Two Variables and its Solution

The general form of a linear equation in two variables is ax + by + c = 0, where a, b and c are real numbers with $a \neq 0$, $b \neq 0$ and x, y are two variables.

e.g., i) x+2y = 5 ii) 2x + 3y = 7

In general equation ax + by + c = 0, if either a = 0 or b = 0, then it becomes a linear equation in one variable. A solution of linear equation in two variables say x and y, is a pair of values, one for x and the other for y, which satisfies the equation.

A linear equation in two variables has infinite number of solutions.

Consider the equation 3x + 4y = 12.

The solutions of this equation are (4, 0) (0, 3), $(1, \frac{9}{4})$, $(2, \frac{3}{2})$, etc.

III. Solution of Simultaneous Equations by Algebraic Method

Graphical method for solving simultaneous equation has some limitations. e.g.,

i) if the solution of simultaneous equations has large values of the variables, e.g., if (-50, 64) is the solution of certain simultaneous equations, then the graphical method will be inconvenient.

(ii) if the solution of simultaneous equations has fractional value for the variables.

e.g. $\left(\frac{7}{15}, \frac{9}{13}\right)$, then this much accuracy is not possible in graphical method.

We shall study two algebraic methods which will give the correct solution to any simultaneous equations: 1) Elimination by Substitution.

2) Elimination by Equation the Coefficient.

Multiple Choice Questions

1.	Find the valu	ie of <mark>x in 2x + 9 =</mark>	= 5x.		
	a) 3	b) 5	c) 6 Groon		
2.	What is the s	solution of the e	$\frac{1}{2} \sqrt{3}x + 2 = 2\sqrt{3}x + 2$	/3 - 1?	
	a) 2 + √3	b) 2 - √3	c) 1 - √3	d) 1 + √3	
3.	What will be	the value of y in	n the following expre	ssion: $\frac{y-1}{5} = \frac{y}{3}$	
	a) $\frac{3}{2}$	b) $\frac{-2}{3}$	c) $\frac{-3}{2}$	d) $\frac{-1}{3}$	
4.	What is the s	solution of equa	tion: x + y = 7 and 2x	- y = 20	
	a) x = 9, y = -	2 b) x = -9, y =	2 c) x = 2, y = 9	d) x = - 2, y = - 9	
5.	The solution	of the following	gequation 45 = 3t + 5	$s, s - t = \frac{7}{6} is$	
	a) s = $\frac{3}{2}$	b) $s = \frac{3}{2}$, $t = \frac{3}{2}$	$\frac{1}{3}$ c) s = $\frac{2}{3}$,	t = 3 d) s = $\frac{-5}{2}$, t = 2	
6.	Find the valu	ie of x and y in t	he following expressi	ions: 5x + 8y = 9 and 2x + 3y =	= 4
	a) 2, 5	b) -2 <i>,</i> 5	c) 5, -2	d) -5, -2	
7.	Solve the fol	lowing simultan	eous equations to fir	nd the value of x and y:	
	$\sqrt{2} x + 3y = \sqrt{2}$	$\sqrt{3}; \sqrt{3}x - 3y = \sqrt{3}$	2		

	a) x = 1, y	$=\frac{\sqrt{3}-1}{3}$	$\sqrt{2}$		b) x = -2	L, y = $\frac{\sqrt{3}}{}$	$\frac{-\sqrt{2}}{3}$							
	c) x = 1, y	$=\frac{\sqrt{3}+}{3}$	$\sqrt{2}$		d) x = 0	$y = \frac{\sqrt{3}}{3}$								
8.	Find the v	alue c	of follow	ing dete	rminant	$\begin{vmatrix} 2 \\ -1 \end{vmatrix}$								
	a) 10		b) 12		c) 9	1	d) 8							
9.	Find the v	value c	of follow	ing dete	rminant	$ \frac{7}{3} \frac{5}{3} \\ \frac{3}{2} \frac{1}{2} $								
	a) $\frac{2}{3}$		b) $\frac{-3}{4}$		c) $\frac{4}{3}$		d) $\frac{-4}{3}$							
10.	What is th	ne solu	ution of	followin	g equati	ons: 3x	- 4y = 7 a	and 5x +	2y = 3					
	a) x = 1 y	= -1	b) x = -	1, y = -1	c) x = 1,	y = 1	d) x = 0	, y = 1			-//			
11.	The sum o	of two	numbe	rs is 146	and the	ir differ	ence is 1	8. Find t	he num	bers.				
	a) 8 <mark>2 & 6</mark> 4	4	b) 89 &	69	c) 80 &	60	d) 88 &	70						
12.	Two <mark>num</mark>	bers a	re in the	ratio 3:	4. If 8 is	added t	o each r	umbers	, their n	ew ratio	become	e <mark>s</mark> 4:5. F	ind num	nbers.
	a) 3 <mark>0 and</mark>	38	b) 32 ar	nd 40	c) 24 ar	nd 32	d) 20 a	nd 28						
13.	Thre <mark>e cha</mark> and one t	airs an able.	d two ta	bles cos	t Rs 1850) five ch	airs and	three ta	bles cos	st Rs 285	0. Find th	he cost	of four	chairs
	a) 130 <mark>0 R</mark>	s	b) 2500	Rs	c) 1500	Rs	d) 1400) Rs						
14.	Sunil is th present a	ree tir ges.	nes as o	ld as Joh	nn. After	3 years	sunil wi	ll be two	o and ha	lf times	as old as	john. F	ind thei	r
	a) Sunil' <mark>s</mark>	age =	28 yrs, J	ohn's ag	e = 9 yrs			b) Suni	l's age =	28 yrs, J	lohn's ag	e = 13 y	rs	
	c) Sunil's	age = 2	27 yrs, Jo	ohn's ag	e = 9 yrs			d) Suni	l's age =	30 yrs, J	lohn's <mark>ag</mark>	e = 7 yr	S	
15.	Sum of ag daughter	ges of i 's age a	mother a at that t	and her i <mark>me fin</mark> d	daughte the pre	er is 60 y sent age	ears. Aft of daug	er 15 ye hter.	ears mot	her's ag	e will be	twice a	s that o	f her
	a) 20 yeai	rs	b) 15 ye	ears	c) 25 ye	ears	d) 10 y	ears						
Q.	Write the	soluti	ons sets	of the s	i <mark>multa</mark> n	eous lin	ear equa	itions:		-7				
16.	2x + 5 = 5	y + 6;	<mark>3 (2x</mark> + y) = 24 - x	x									
	a) (3, 1)		b) (2, 1)		c) (4, 3)		d) (2 <i>,</i> 6)						
17.	7x + 13y =	= 27; 1	3x + 7y =	= 33										
	a) (3, 1)		b) (2, 1)		c) (1, 2)		d) (1 <i>,</i> 3)						
18.	57x - 56y	= 169;	; 56x - 57	7y = 170										
	a) (1, 2)		b) (-1,-2	<u>2)</u>	c)(-1, 2)		d) (-2, 1	L)						
19.	23p + 27c	q = 100); 27p +	23q = 10	00			the						
	a) (2, 3)		b) (2, 2)		c) (2, 1)		d) (2, 0)						
20.	$\frac{x}{2}$ + 3y = 1	1; x + v	y = 20				Jauci							
	$\frac{2}{a}$ (5.2)		b) (2.5)		c) $(2, 10)$	1	d) (10	2)						
21	x, y_r	X	y 49		0, (2, 1)	-,	u) (10,	_/						
21.	$\frac{1}{15} + \frac{1}{12} = 5$	$\frac{12}{12}$	$\frac{1}{15} = \frac{1}{10}$											
	a) (5 <i>,</i> 6)		b) (10, 1	12)	c) (15, 1	18)	d) (30,	36)						
22.	3x + 2y =	13; 9x	$^{2} - 4y^{2} =$	65										
	a) (3 <i>,</i> 2)		b) (2, 3)		c) (-3, 2	.)	d) (3, -2	<u>?)</u>						
23.	$\sqrt{x} + 2\sqrt{y}$	= 8	(1)	&	3√x - √	√ y = 3	(2)	- 7						
	a) (9 <i>,</i> 4)		b) (4, 9)		c) (9, - 4	4)	d) (- 9,	4)						
24.	$x^2 + 7 = 4$	y ²	.(1)	&	x+1 = 2	y-16 .	(2)							
	a) (-3, -2)		b) (2, 3)		c) (3, 2)		d) (3, -2	2)						
	Answer K	leys												
	1.a 2	2. c	3. c	4. a	5. b	6. c	7. a	8. b	9. d	10. a				

	11. a	12. c	13. a	14. c	15. b	16. a	17. b	18. c	19. b	20. d		
	21. d	22. a	23. b	24. c							1	
	HINTS AND SOLUTIONS											
9.	$\begin{vmatrix} 3 & 3 \\ \frac{3}{2} & \frac{1}{2} \end{vmatrix} = \frac{7}{3} \times \frac{1}{2} - \frac{3}{3} \times \frac{3}{2} = \frac{7}{6} - \frac{13}{6} = \frac{3}{6} = \frac{7}{3}$											
13.	Let cost of each chair = x Rs and cost of each table = y Rs											
	∴ 3x +2	y = 1850)(i)	and 5x +	· 3y = 28		(ii)					
	Multiplying equation (i) by 3 and equation (ii) by 2. We get,											
	$\therefore 9x + 6y = 5550$ (iii) and $10x + 6y = 5700$ (iv)											
	By Subtracting: (iii) - (iv); we get, - x = - 150 i.e. x = 150.											
	Substitu	ute x = 1	50 in eq	uation (i),							
	3(150) -	+ 2y = 18	350	·· 1450	+ 2y= 18	850	∴ y = 7	00.				
	Total co	ost = 4 x	150 + 70	0 = 130	0.	11	<u>\ </u>	11				
16.	2x + 5 =	5y + 6	∴ 2x - 5	y = 6 – 5		∴ 2x - 5	5y = 1	(i)		~ ~ ~ ~	()	
	And, 3 (2x + y) =	= 24 – x	∴ 6x + :	3y = 24 -	x ∴ t	x + x + z	3y = 24	∴ /x +	3y = 24	(11)	
	Multip	ying equ	iation (I)	by / an	d equati	ion (II) b	y 2, (:)					
	we get,	14X - 35	oy = /	(III) & 1 1) from (4x + by	= 48 . . (iii)	(IV) 					
		ung equ	• v – 1) 110111 €	eris (a)	r (iii), we	e get,					
17	-41y = 7x + 13y	- 41 v = 27	··· y – 1	3x + 7y = 2x + 7y	= 33	(ii)						
17.		equatio	ns (i) and	d (ii) we	- 55	(1) x + 20v :	- 60					
	By divid	ling hoth	n the sid	es hy 20	we get	· x + v =	3(ii	i)				
	Subtrac	ting equ	ation (ii) from e	quation	(i) we g	et6x +	., 6v = - 6	5			
	By divid	ling both	the sid	es by 6 v	we get	-x + y = -	1 (iv)					
	, Adding	equatio	<mark>n (iii)</mark> an	, d (iv), w	e get, 2	, / = 2	$\therefore y = 1$					
	Substitu	uting y =	1 in equ	uation (ii	ii), we ge	et, x + 1	= 3	∴ x = 2	∴ ans	swer is (b).	
18.	57x - 56	6y = - 16	9(i) 8	& 56x - 5	57y = -17	70 (ii)					
	Adding	equatio	n (i) and	(ii) we g	get, 113	k - 113y	= - 339	∴ x - y	= -3((iii)		
	Subtrac	ting equ	iation (ii) from e	quation	(i), we g	get, x + y	· = 1(iv)			
	Adding	equatio	n (iii) an	d (iv), w	e get, 2>	(= -2	∴ x = -2	1				
	Substitu	uting x =	- 1 in ec	quation	(iv), we į	get, - 1 +	- y =1	∴ y = 2				
	∴ soluti	on of th	e equati	on is (-1	, 2).	: answ	er is (c)	the				
20.	$\frac{\pi}{2}$ + 3y =	11		∴ <mark>х + б</mark> у	/ = 22	(i)	. (Multip	olying bo	oth the s	ides by 2	2)	
	x + 5y =	20	(ii)									
	Subtrac	ting equ	iation (ii) from e	quation	(i), we g	get, y = 2	2 (iv)				
	Substitu	uting y =	2 in equ	uation (ii	i), we ge	et,		•				
	X + 5 X 2	2 = 20		∴ x + 1(0 = 20		∴ x = 1	0				
22	\therefore soluti	on is (10 2 – 65), Z)	\therefore answ $(2\omega)^2 =$	er is (a).	. (2)	2.1 (2)	$2 \lambda - c i$				
25.	9x - 4y	- 05 the valu	•• (5X) •	- (∠y) - + 2y) - '	05 12 in the	+xc) ··	zy) (sx -	- 2y) – 0: n. wo ge	5 x+			
	13/3x -	2v = 65		· ∠y)	v = 5		equation	n, we ge	,			
	Adding	equatio	n (i) and	(iii). we	, et 6x	= 18	∴ x = 3					
	Now so	lve	(1) 4110	∴ answ	er is (a).							
24.	Multiply	ying eau	ation (ii) by 2 ar	id addin	g equat	ion (i) ar	nd (ii), w	ve get 7√	x = 14		
	$\therefore \sqrt{\mathbf{x}} = 2$	2 i.e. x =	4.				()	<i>、</i> // ···	0 - 1			

Now putting the value of x = 4 in equation (i) we get, $\sqrt{4} + 2\sqrt{y} = 8$ $\therefore 2\sqrt{y} = 6$

 $\sqrt{y} = 3 \text{ i.e. } y = 9. \qquad \therefore \text{ Solution} = (4,9). \qquad \therefore \text{ answer is (b).}$ $x^{2} - 4y^{2} = -7 \qquad \therefore x - 2y = -1 \qquad (i) \qquad \& \qquad (x)^{2} - (-2y)^{2} = -7 \qquad \therefore (x + 2y) (x - 2y) = -7$ Putting the value of (x - 2y) = -1 in the above equation, $-1(x + 2y) = -7 \qquad x + 2y = 7.... (ii) \qquad \therefore 2x = 6$ Now adding (i) and (ii) we get, $2x = 6 \qquad \therefore x = 3$ Now solve.... $\therefore \text{ answer is (c).}$

25.

SAHAKAR DEFENCE

Grooming the **Leader**

5. Quadratic Equations

Important Facts and Formulae

- **I.** Quadratic equation: A quadratic equation is defined as the equation $ax^2 + bx + c = 0$ where the left-hand side of the equation is a polynomial of degree 2.
- **II. Roots of an equation:** The values of x that satisfy an equation are called roots of the equation.
- III. Roots of quadratic equation: The roots of the quadratic equation $ax^2 + bx + c = 0$ are given by $-b + \sqrt{b^2 - 4ac}$

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$$

where, a = coefficient of x^2 ; b = coefficient of x; c = constant term

IV. Relation between the roots and coefficients: For a quadratic equation $ax^2 + bx + c = 0$

(i) sum of roots = $\frac{-b}{a}$

(ii) product of roots = $\frac{c}{a}$

V. Method of finding quadratic equation: When the roots are known, the equation is given by x²- (sum of roots)x + (products of roots) = 0

Multiple Choice Questions

If the sum of the roots of a quadratic equation is 6 and the product of roots is also 6, then equation is 1. b) $x^2 + 6x - 6 = 0$ a) $x^2 - 6x + 6 = 0$ d) $x^2 + 6x + 6 = 0$ c) $x^2 - 6x - 6 = 0$ The value of the expression $16x^2 + 24x + 9$ for $x = \frac{-3}{4}$ is 2. a) 2 b) 1 c) 0 d) -1 3. The solution of simultaneous equations 2x + y = 8, 5x - 4y = 7 is a) x = 2, y = 4 b) x = 3, y = 2 c) x = 5, y = -2 d) x = 6, y = -4If one root of $x^2 - 4x + k = 0$ is 6 then the value of k is 4. b) 12 a) -2 c) 2 d) -12 The values of x & y that simultaneously satisfy the equations 2x + 3y = 5 & 7x - 4y = 3 are 5. c) 0, 1 b) 1, 0 d) 1, 1 a) -1, 1 6. Which one of the following is not factor of $x^3 - 6x^2 + 11x - 6$ a) (x-3) b) (x-6) c) (x-4) d) (x-1) The system of equations 2x + ky + 5 = 0 & x - 3y + 9 = 0 has unique solution when 7. b) K ≠ -6 c) K = 6 d) K = -6 a) K ≠ 6 If the roots of the equation $16x^2 - 2kx + 25 = 0$ are equal, then the value of k is 8. a) 40 b) - 40 c) ± 20 d) ± 10 The roots of equation $2x^2 = 3x + 4$ are 9. a) $\frac{-3 + \sqrt{41}}{41}$ b) $\frac{3 + \sqrt{41}}{4}$ If one root of $kx^2 - 5x + 6 = 0$ is 2, find k. 10. d) -2 a) 0 c) -1 b) 1 What are the roots of equation $2x^2 - 7x + 5 = 0$ 11. d) $\left\{\frac{-5}{2}, -1\right\}$ a) $\left\{\frac{-5}{2}, 1\right\}$ b) $\left\{\frac{5}{2}, 1\right\}$ c) $\left\{\frac{5}{2}, -1\right\}$ What are the roots of equation, $x^2 - 6x + 9 = 0$ 12. d) $\left\{\frac{1}{3}, -3\right\}$ a) {3, -3} b) {-3, -3} c) {3, 3} What are the roots of equation $x^2 - 2x - 2 = 0$ 13. c) $(-1+\sqrt{3}, -1-\sqrt{3})$ a) $\{1+\sqrt{3}, 1-\sqrt{3}\}$ [b) $(-1+\sqrt{3}, 1-\sqrt{3})$ d) $(1-\sqrt{3}, -1+\sqrt{3})$ The roots of the following quadratic equations are: Q. $x^2 - 6x + 5 = 0$ 14. a) (1, 5) d) (7, 9) b) (3, 5) c) (5, 7) 15. $x^2 + 5x - 14 = 0$ c) (2, -7) d) (7, -5) a) (2, 3) b) (3, -5) $y^2 - 3y - 10 = 0$ 16.

a)
$$(2, -5)$$
 b) $(2, 5)$ c) $(-3, 2)$ d) $(3, -2)$
17. $3x^2 = 4x$
a) $(0, 4)$ b) $(0, 3)$ c) $(4, 3)$ d) $(0, 4/3)$
18. $25P^2 \cdot 49 = 0$
a) $(\frac{7}{5}, \frac{5}{7})$ b) $(\frac{7}{5}, -\frac{5}{7})$ c) $(\frac{4}{5}, -\frac{5}{7})$ d) $(5, -7)$
19. $\frac{1}{4}(x+5)^2 = 9$
a) $(3, -3)$ b) $(1, -11)$ c) $(4, 3)$ d) $(0, 4/3)$
20. $6x^2 + 17x + 12 = 0$
a) $(-8, -9)$ b) $(\frac{-3}{2}, \frac{4}{3})$ c) $(\frac{-3}{2}, \frac{-4}{3})$ d) $(\frac{3}{2}, \frac{4}{3})$
21. $4y^2 \cdot 5y = 0$
a) $(\frac{-3}{2}, \frac{2}{3})$ b) $(\frac{-1}{2}, \frac{3}{2})$ c) $(\frac{1}{2}, \frac{-3}{2})$ d) $(\frac{4}{2}, \frac{4}{3})$
22. $(m + \frac{1}{2})^2 = 1$
a) $(\frac{1}{2}, \frac{2}{3})$ b) $(\frac{-1}{2}, \frac{3}{2})$ c) $(\frac{1}{2}, \frac{-3}{2})$ d) $(\frac{-1}{2}, \frac{-3}{2})$
23. $6n^2 \cdot 5n \cdot 21 = 0$
a) $(\frac{7}{3}, -\frac{3}{2})$ b) $(\frac{7}{3}, \frac{3}{2})$ c) $(\frac{7}{3}, \frac{3}{2})$ d) $(\frac{-2}{3}, \frac{-3}{2})$
24. $2y^2 + 11y + 15 = 0$
a) $(-3, -5)$ b) $(-3, 5)$ c) $(-3, \frac{5}{2})$ d) $(-3, -\frac{5}{2})$
25. $x^2 + 5x - 2 = 0$
a) $(0, 5)$ b) $(\frac{-5+\sqrt{32}}{2}, \frac{-5-\sqrt{33}}{2})$ c) $(\frac{-5+\sqrt{32}}{2}, \frac{-5-\sqrt{37}}{2})$ d) $(\frac{5}{2}, \frac{-5}{2})$
26. One root of the equation $2x^2 + 3x + k = 0$ is Then value of K is:
a) -2 b) 2 c) -1 d) $1/2$
27. The sum of the roots of the equation $3x^2 - 7x + 13 = 0$, then $a + \beta$ is equal to:
a) $\frac{2}{3}$ b) $-\frac{2}{3}$ c) $\frac{3}{7}$ d) 1
28. If a, β are the roots of the equation $3x^2 - 7x + 13 = 0$, then $a + \beta$ is equal to:
a) $\frac{2}{3}$ b) $-\frac{3}{3}$ c) $\frac{5}{\sqrt{11}}$ d) 1
29. The product of the roots of the equation $3x^2 - 7x + 13 = 0$, then $a + \beta$ is equal to:
a) $\frac{2}{3}$ b) $-\frac{3}{3}$ c) $\frac{5}{\sqrt{11}}$ d) 1
29. The product of the orots of roots $= 6 + x^2 - (x - x + 3\sqrt{11} = 0$
a) 3 b) -3 c) $\frac{5}{\sqrt{11}}$ d) 1
20. The product of the roots of roots $= 6 + x^2 - (x - x + 3\sqrt{11} = 0$
a) $3 - \frac{x^2}{16} - 24x^2 \frac{3}{4}$ $49 = 9 - 18 + 9 = 0$ 3 . The answer is (c)
3. $2x + y = 8$ (i) $5x + 4y = 7$ (ii)
multiplying (i) by 4 & adding resultant to (ii) we get, 13x = 39
 $x = 3$ substituting in ((i); 2x + 3y = 8
 $x = 9$ $x = 3$ $x = 3$

4. Since 6 is a root of $x^2 - 4x + k = 0$ $:.6^2 - 4 \times 6 + k = 0$ ∴ 36 – 24 + k = 6 ∴ k = - 12 2x + 3y = 5(i) 7x - 4y = 3(ii) 5. multiplying (i) by 4 & (ii) by 3 & adding we get, 29x = 29; x = 1. putting this value of x in (i), $2 \times 1 + 3y = 5$ ∴ 3y = 3 ∴ y=1 $\therefore x = 1, y = 1.$ x = 4 does not satisfy the given equation. 6. \therefore (x-4) is not factor of x³ - 6x² + 11x = 6 x - 3y + 9 = 0(ii) 7. 2x + ky + 5 = 0(i) by cross multiplication; $\frac{x}{9k+15} = \frac{y}{5-18} = \frac{1}{-6-k} - k - 6 \neq 0$ ∴ k ≠ -6 $16x^2 - 2kx + 25 = 0$ roots are equal, then $b^2 - 4ac = 0$ 8. $\therefore (-2k)^2 - 4 \times 16 \times 25 = 0$ $x^{2} - 6x + 5 = 0$ $\therefore x^{2} - 5x - x + 5 = 0$ $\therefore (x-5)(x-1) = 0$ $\therefore x = 5 \text{ or } 1$ 14. $x^{2} + 5x - 14 = 0$ $\therefore x^{2} + 7x - 2x - 14 = 0$ $\therefore (x+7)(x-2) = 0$ ∴ x = - 7 or 2 15. y² - 3<mark>y – 10</mark> = 0 $\therefore y^2 - 5y + 2y - 10 = 0 \quad \therefore \quad (y-5) \quad (y+2) = 0$ \therefore y = 5 or -2 16. $3x^2 = 4x$ $\therefore 3x^2 - 4x = 0$ $\therefore x (3x - 4) = 0$ $\therefore x = 0 \text{ or } x = \frac{4}{3}$ 17. :. (5P+7) (5P-7) = 0 :. $p = \frac{-7}{5}$ or $p = \frac{7}{5}$ 18. $25p^2 - 49 = 0$ 19. $(x+5)^2 = 9$ Multiplying both sides by 4, $\therefore (x+5)^2 = 36$ $\therefore (x+5)^2 = \pm 6 = 0$ \therefore (x+5) = ±6 \therefore (x+5) = ±6 = 0 \therefore x + 5 = 6 or x + 5 = -6 x = 1 or x = -11 $6x^{2} + 17x + 12 = 0 \qquad \therefore 6x^{2} + 9x + 8x + 12 = 0 \qquad \therefore 3x (2x+3) + 4(2x+3) = 0$ 20. \therefore (2x+3) (3x+4) = 0 \therefore x = - 3/2 or x = - 4/3 $4y^2 - 5y = 0$ $\therefore y (4y-5) = 0$ $\therefore y = 0$ or 4y = 5 $\therefore y = 5/4$ 21. $\left(m+\frac{1}{2}\right)^2 = 1$ $\therefore \left(m+\frac{1}{2}\right)^2 = (1)^2$ $\therefore m+\frac{1}{2}=\pm 1 \text{ or } m=-\frac{1}{2}\pm 1$ $\therefore m=\frac{1}{2} \text{ or } m=\frac{-3}{2}$ 22. $6n^2 - 5n - 21 = 0$ $\therefore 6n^2 - 14n + 9n - 21 = 0$ 23. \therefore n = $\frac{7}{3}$ or n = $\frac{-3}{2}$ ∴ 2n (3n -7) + 3 (3n -7)= 0 ∴ (3n-7) (2n+3)=0 $2y^{2} + 11y + 15 = 0 \qquad \therefore 2y^{2} + 6y + 5y + 15 = 0 \qquad \therefore 2y (y+3) + 5(y+3) = 0$ $\therefore (y+3) (2y+5) = 0 \qquad \therefore y = -3 \text{ or } y = \frac{-5}{2}$ 24. $\therefore x^{2} + 5x + \left(\frac{5}{2}\right)^{2} = 2 + \left(\frac{5}{2}\right)^{2} \ln g \quad \text{in Completing the square}$ $x^2 + 5x = 2$ 25. $\therefore \left(x + \frac{5}{2}\right)^2 = 2 + \frac{25}{4} = \frac{33}{4} \qquad \qquad \therefore \left(x + \frac{5}{2}\right)^2 = \left(\sqrt{\frac{33}{2}}\right)^2 \qquad \therefore x + \frac{5}{2} = \pm \sqrt{\frac{33}{2}}$ $\therefore x = \frac{-5 + \sqrt{33}}{2}$ or $x = \frac{-5 - \sqrt{33}}{2}$ $2x^{2} + 3x + K = 0$. Putting the value $x = \frac{1}{2}$ in the equation we get, 26. $2\left(\frac{1}{2}\right)^2 + 3 \times \frac{1}{2} + k = 0$ $\therefore \frac{1}{2} + \frac{3}{2} + k = 0$ $\therefore 2 + k = 0$ $\therefore k = -2$ ∴ answer is (a). $ax^2 + bx + c = 0$, $a \neq 0$; Sum of roots is $\frac{-b}{a}$ 27. \therefore answer is (c). $3x^2 + 7x + 3 = 0$, then $\alpha + \beta$ is: $\frac{-b}{\alpha} = \frac{-7}{3}$ 28. \therefore answer is (a). $\sqrt{11}x^2 - 5x + 3\sqrt{11} = 0$, then $\alpha \cdot \beta$ is $\frac{c}{a} = \frac{3\sqrt{11}}{\sqrt{11}} = 3$ 29. \therefore answer is (a).

6. Arithmetic Progression Important Facts and Formulae

I. Sequence:

Consider the following arrangement = 2.

The difference between the 3rd and 2nd numbers = 5 - 3 = 2. Here, we find that the difference between any two consecutive number is 2.

In the second arrangement, the first number is $2=2^1$. The second number is $4=2^2$, the third number is $8=2^3$,

In the third arrangement the difference between the consecutive numbers is - 3. Thus, a sequence is a collection of numbers arranged in some order and obtained in succession according to some definite rule. The individual numbers forming a sequence are called the terms of the sequence.

II. Arithmetic Progression (A.P.)

Consider the following sequences:

1) 1<mark>, 4, 7, 10, 13, ...,</mark>

2) 2<mark>4, 20,</mark> 16, 12, 8, ...,

3) 3, <mark>9, 27,</mark> 81, 243,

13 - 10 = 10 - 7 = 7 - 4 = 4 - 1 = 3.

Here, the difference between the consecutive numbers is 3, which is constant. Therefore, the sequence is an arithmetic progression and the common difference d = 3.

In the second sequence,

 $8-12 = \frac{12-16}{12} = 16-20 = 20-24 = -4$, which is constant. Therefore, this sequence is an arithmetic progression and the common difference d = -4.

In the third sequence, the difference between the consecutive numbers is not constant. Therefore, the sequence is not an arithmetic progression.

A sequence in which each term (except the first) differs from the previous one by a constant number, the common difference, is an arithmetic progression.

III. The General Term or nth Term of an A.P.

Let a be the first term and d, the common difference of an A.P.

By the definition of an A.P.

 $t_1 = a,(1)$ $t_2-t_1=d,(2)$ $t_3-t_2=d,(3)$

t_n-t_{n-1}=d,(n)

Adding the above n equalities,

t_n = a + (n + 1)<mark>d, n=1</mark>,2,3,.....

 \therefore the terms of an A.P. whose first term is a and common difference d are a, a + d, a + 2d, ..., a + (n-1)d,..... Formula to find the nth term of an A.P.: t = a + (n + 1) d, where t is n the nth term, a is the first term and d is the common difference.

IV. The Sum of the First n Terms of an A.P.

The sum of the first n terms of an A.P. is denoted by S. Let a be the first term and d the common difference. Then, the terms of the A.P. are a, a + d, a + 2d, ..., a + (n - 1)d,

Here, $t_n = a + (n - 1)d$, $n \in N$. Let us denote $t_n = 1$.

Then, the first n terms of the A. P. are a, a + d, a + 2d, ..., l - 2d, l - d, l.

 \therefore S_n = a + (a + d) + (a + 2d), ..., + (I - d) + I

Also, $S_n = I + (I - d) + (I - 2d), ..., + (a + 2d) + (a + d) + a$.

Adding corresponding terms of the above equations,

 $2S_n = (a + I) + (a + I) + (a + I), \dots, +(a + 1) + (a + 1) + (a + 1) \dots$ [n times]

 $\therefore 2S_n = n(a + I) \qquad \qquad \therefore S_n = (a + I)$

Substituting t_1 for a and t_n for I,

 $S_n = (t_1 + t_n) \dots (1)$

 $t_1 = a \text{ and } t_n = l = a + (n - 1) d, :: Sn = [a + a + (n - 1)d]$

:: Sn = [2a + (n-1)d] ... (2)

Multiple Choice Questions

1.	Find t _n for the following	sequence if the	ey are in a <mark>rit</mark> hme	tic progression 1, 5, 9, 13
	a) 3n-4	b) 4n-3	c) 6n-5	d) 5n-6
2.	Find t _n for following sec	uence if they ar	re A.P.'s: 24, 21,	<u>1</u> 8, 15
	a) 27n-3	b) 23n-7	c) 27-3n	d) 23n-7
3.	For an A.P., if t ₄ = 20 an	d t ₇ = 32 find a, d	d and t _n .	
	a) a = 6, <mark>d =</mark> 4, t _n = 4n+4	b) a = 8	<mark>3, d = 4, t_n = 4n+4</mark>	4
	c) $a = 4$, $d = 4$, $t_n = 4n+4$	d) a = 8	3, d = 6, t _n = 4n+4	1
4.	Which term of the A.P.	8, 11, 14, 17	is 758?	
	a) 251	b) 242	c) 200	d) 223
5.	For an A.P., if $t_1 = 100$, t	n = 1000 and n =	= 10 find S _n .	
	a) 5 <mark>000</mark>	b) 5500	c) 6000	d) 6550
6.	Find the sum of all natu	ral numbers bet	tween 50 and 25	0. which are divisible by 6.
	a) 49 <mark>50</mark>	b) 9540	c) 5490	d) 9940
7.	For an A.P. 't ₁ ' = 20, t _n =	= 200 and n = 10	. Find S _n .	
	a) 10 <mark>00</mark>	b) 1430	c) 1010	d) 1100
8.	Find t _n in 27, 20, 13, 6			
	a) 7-34 n	b) 34-7n	c) 34n-7	d) 34n-6
9.	How many terms are th	ere in the A.P. 2	201, 208, 215,	., 369?
	a) 20 ter <mark>ms</mark>	b) 30 terms	c) 25 terms	d) 15 terms
10.	Find the <mark>first te</mark> rm if, d :	= -7, and t ₁₇ = -9	6	
	a) 16	b) 17	c) 15	d) 14
11.	Find the 10 <mark>th ter</mark> m of th	ne AP. 3, 1, -1, -3	3	
	a) 15	b) -15	c) 12	d) -12
12.	Find the com <mark>mon diff</mark> er	ence, if a = 100	and t ₂₀ = 176.	
	a) 6	b) 2	c) 4	d) 5
13.	Find the 7th term of the	e A.P. 6, 10, 14,.		
	a) 30	b) 12	c) 15	d) 14
14.	For an A.P. a = 2, d = 3,	find S ₁₂		
	a) 111	b) 222	c)-222	d)-111
15.	If for an A.P. a = 8, d = -	<mark>2, find S₃</mark> ₀		
	a) 630	b <mark>) 360</mark>	c) -630	d) - 360
16.	5, 8, 11, 14, 17,	is an <mark>A.P. then</mark> c	ommon differen	ice and first term is:
	a) 3,5	b) 5,3	c) 0, 1	d) None of these
17.	23rd term of the AP 7, 5	5, 3, 1,is:		
	a) — 51	b) 53	c) 37	d) - 37
18.	Which term of the AP 5	, 8, 11, 14,	is 320.	
	a) 104 th	b) 105 th	c) 106 th	d) 64 th
19.	The sum of all odd num	bers between 1	00 and 200 is:	
	a) 6200	b) 6500	c) 7500	d) 3750
20.	The sum of all even nat	ural numbers ha	ave between 300) and 400 is:
	a) 16500	b) 17500	c) 169400	d) None of these
21.	The arithmetic mean be	etween 14 and 1	.8 is:	
	a) 16	b) 15	c) 17	d) 32
22.	In an AP 3 rd term is 18 a	ind 7 th term is 3	0. The sum of is	17th term is:
	a) 600	b) 510	c) 624	d) None of these

23.	The sum of first 7 term of an AP is 10 and that of next 7 term is 27 the common difference:												
	a) 1/7			b) 7		c) 3		d) 1/3					
24.	The tenth term of the AP 357, 363, 369 is:												
	a) 423 b) 417 c) 411 👝 d) None of these												
25.	How ma	any two	digits n	umbers	are ther	e which	are divis	sible by	5:				
	a) 25			b) 23		c) 27		d) 18					
26.	The sun	n of AP i	s 2, 4, 6,	, 8, 10, 1	2:								
	a) 40			b) 42		c) 44		d) 38					
27.	The sun	<mark>n of</mark> 20 t	erms of	an AP w	hose fir	<mark>st term i</mark>	is 4 and	commo	n differe	ence is 3:			
	a) 650			b) 600		c) 550		d) 700					
28.	In AP th	e first te	erm is 2	and last	term is	29, then	the sur	n of if x	= 10 is:				
	a) 165			b) 160	_	c) 155		d) 150					
29.	If the sum of x of terms of an AP is 525 first term is 3 and last term is 39, then 'x' is:												
	a) 2 <mark>2</mark>			b) 20		c) 25	()	d) 23					
30.	If (k+1), 3k and (4k + 2) be any three consecutive terms of an AP, then the value of k is:												
	a) 3			b) 0		c) 1	$\land \land \land$	d) 2					
31.	Whic <mark>h t</mark>	erm of t	he AP 8:	, 11, 14,	17, is	is 7	′58 .						
	a) 25 <mark>0</mark>			b) 251		c) 248		d) 252					
32.	The 5th	and 13t	h term	of an AP	are 5 ai	nd - 13 r	espectiv	ely the	first terr	n of the <i>i</i>	AP is:		
	a) 3			b) 14		c) -15		d) 9					
33.	Which t	erm of t	he AP 6:	4, 60, 56	5, 52,	is z	zero:						
	a) 16 th			b) 17 th		c) 15 th		d) 14 th					
34.	How ma	a <mark>ny term</mark>	ns of the	AP 3, 6,	9, 12, 1	5,	. must b	e taken	to make	e the sun	n 108:		
	a) 8			b) 12		c) 17		d) 32					
35.	For AP t	: ₈ = <mark>36, t</mark>	hen t ₁₅ i	s:									
	a) 540			b) 542		c) 538		d) 536					
36.	, If the 5t	h and 1	2th term	ns of an	AP are 1	4 and 3	5 respec	, tively, tl	hen the	first tern	n and co	mmon c	difference
	are:												
	a) 2, 3			b) 3,4		c) 1, 2		d) 4,5					
37.	The Arit	hmetic	mean be	etween 3	3 and 13	B is:							
	a) 3			b) 8		c) 10		d) 13					
38.	Which t	erm of t	he AP 2:	, 5, 8,	is 5	6?							
	a) 20			b) 21		c) 19		d) 18					
39.	The sun	n of 10 t	erms of	the seri	<mark>es 3, 8,</mark> 2	13, 18 <mark>,</mark>	is						
	a) 255			b) 280		c) 520	eaue	d) 750					
40.	The sun	n of 12 t	erms of	an AP w	hose fir	st term 2	2 and co	mmon o	<mark>differe</mark> nd	ce is 3:			
	a) 221			b) 222		<mark>c)</mark> 220		d) 223					
	Answer Keys												
	1. b	2. c	3. b	4. a	5. b	6. a	7. d	<mark>8.</mark> b	9. c	10. a			
	11. b	12. c	13. a	14. b	15. c	16. a	17. d	18. c	19. c	20. b			
	21. a	22. b	23. a	24. c	25. d	26. b	27. a	28. c	29. c	30. a			
	31. a	32. b	33. b	34. a	35. c	36. a	37. b	38. c	39. a	40. b			
	HINTS A	AND SOL	UTIONS	5					1				
2.	$t_1 = 24, t_2 = 21, t_3 = 18, t_4 = 15$												
		-	-										

$\begin{aligned} t_2 - t_1 &= 21 - 24 = -3; \, t_3 - t_2 &= 18 - 21 = -3; \, t_4 - t_3 &= 15 - 18 = -3 \\ \therefore \, a &= 24, \, d = -3 \\ t_n &= a + (n-1)d = 24 + (n-1)(-3) = 24 - 3n + 3 = 27 - 3n. \end{aligned}$

∴ answer is (c).

3. Let a be the first term d be the common difference of A.P.

 $t_n = a + (n - 1)d = a + (4 - 1)d = a + 3d; t_4 = 20;$ a +3d = 20(1) $t_7 = a + (7 - 1)d = a + 6d; t = 32$ ∴ a+ 6d = 32(2) Subtracting equation (i) from equation (ii) : 3d = 12 ∴d = 4. Substituting the value of 'd' in equation (1) $a + 3 \times 4 = 20$ $\therefore a = 8$ $t_n = a + (n-1)d = 8 + (n-1) \times 4 = 8 + 4n - 4 = 4n + 4$ $a = 8, d = 4, t_n = 4n+4$ \therefore answer is (b). The natural numbers between 50 & 250 divisible by 6 = 54, 60, 66 246 6. $a = t_1 = 54; d=6$ $t_n = \frac{246}{246} and t_n = a + (n-1)d$ $\therefore 246 = 54 + (n-1) \times 6$ $\therefore 246 = 48 + 6n$ ∴ n = 33. $S_n = \frac{n}{2} (t_1 + t_n) = \frac{33}{2} (54 + 246) = \frac{33}{2} \times 300 = 33 \times 150 = 4950.$ \therefore answer is (a). Let there be 'n' terms in the given A.P. 9. $t_n = 369, a = 201, d = 208 - 201 = 7.$ $t_n = a + (n-1)d$ $\therefore 369 = 201 + (n-1) \times 7 \therefore 369 - 201 = 7(n-1)$ \therefore 7(n - 1) = 168, n - 1 = 24, n = 25 ∴ answer is (c). a = 3; d = 1 - 3 = -1 -1 = -3 - (n-1) = -2 11. $t_n = a + (n-1)d$ \therefore $t_{10} = 3 + (10-1)(-2) = -15$ ∴ answer is (b). a = 100, t₂₀ = 176 12. $t_n = a + (n-1)d \quad \therefore \quad t_{20} = a + (20-1)d \quad \therefore \quad 176 = 100 + 19d$ ∴ 19d = 176-100 ∴ 19d = 76 ∴ d = 4 \therefore answer is (c). 15. a = 8, d = - 2, n = 30 $S_n = \frac{n}{2} [2a + (n - 1)d] = \frac{30}{2} [2 \times 8 + (30 - 1) (-2)] = 15 [16 + 29 \times (-2)] = -630.$ \therefore answer is (c). $d_2 - d_1 = 8 - 5 = 3$, first term is 5. 16. $d_2 - d_1 = 5 - 7 = -2, a = 7$ 17. $t_n = a + (n-1)d = 7 + (23 - 1)x - 2 = 7 - 44 = -37$ \therefore answer is (d). $a = 5, d_2 - d_1 = 8 - 5 = 3, t_n = 320$ 18. $t_n = a + (n-1)d$ $\therefore 320 = 5 + (n-1)3$ ∴ 320 = 5 + 3n - 3 $\therefore 320 - 2 = 3n \quad \therefore 318 = 3n \quad \therefore 106 = n$ ∴ answer is (c). a = 101, d = 103 - 101 = 2, n = 199 19. $t_n = a + (n-1)d$ $\therefore 199 = 101 + (n-1) \times 2$ ∴ 199 = 101 + 2n - 2 $\therefore 199 = 2n+99 \quad \therefore 199 - 99 = 2n$ ∴ 100 = 2n ∴ 50 = n Now, $S_n = \frac{n}{2} (t_1 + t_n)$ $S_{50} = \frac{50}{2} [101 + 199] = 25 \times 300 = 7500$ \therefore answer is (c). 20. a = 301, d = 303 - 301 = 2 $t_n = a + (n-1)d$ $\therefore 399 = 301 + (n-1)2 = 301 + 2n - 2 = 299 + 2n$ ∴ 399 - 299 = 2n ∴ n = 50

Then, $S_{50} = \frac{50}{2} [301 + 399] = 25 \times 700 = 17500$

 \therefore answer is (b). $\frac{14+18}{2}$ = 16 21. ∴ answer is (a). Let 'a' be the first term and 'd' be the common difference of the A.P. 22. t_n = a+(n-1)d ∴ t₃ = a+ (3-1)d ∴ t₃ = a <mark>+2</mark>d $\therefore a+2d = 18$ (1) And, t₇ = a+(n-1)d ∴ t₇ = a+(7-1)d <mark>∴ t₇ = a+6d ∴ a+6d=30(2)</mark> a + 2d = 18 (1) (2) a + 6d = 30 -4d = -12 d = 3 Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ $\therefore S_n = \frac{17}{2} [2 \times 6 + (17 - 1)3]$ \therefore Sn = $\frac{17}{2}$ x $\frac{60}{1}$ = 17 x 30 = 510 $\therefore S_n = \frac{17}{2} [12+48]$ ∴ an<mark>swer</mark> is (b). Given $S_7 = 10$ and $S_{14} = 27$ 23. $S_7 = \frac{7}{2} [2a + 6d] = 10 \text{ and } S_{14} = \frac{14}{2} [2a + 13d] = 27$ and $S_{14} = 14a + 91d = 27$ $d = \frac{1}{7}$ \therefore S₇ = 7a + 21d = 10 \therefore answer is (a). d = 36<mark>3 - 35</mark>7 = 6; a = 363 24. 10^{th} term = a + (n-1) d = 357 + (10-1) 6 = 357 + 54 = 411 \therefore answer is (c). 25. a = 10, d = 5 $t_n = a + (n-1) d \therefore 95 = 10 + (n-1) d \therefore 90 = 5n$ ∴ n = 18 \therefore answer is (d). Here a = 2 and d = 4 - 2 = 2 and n = 626. $S_6 = \frac{6}{2} [2a + (n-1)d] \qquad \therefore S_6 = \frac{6}{2} [2 \times 2 + 5 \times 2] \qquad \therefore S_6 = 3 [4 + 10] = 42$ \therefore answer is (b). Here a = 4 and d = 8 and n = 20 27. $S_{20} = \frac{20}{2} [2 \times 4 + 19 \times 3]$ $\therefore S_{20} = 10 [8 + 57] = 650$ \therefore answer is (a). Here $a_1 = 2$, $a_{10} = 29$, n = 1028. ∴ S₁₀ = 5 x 31 = 155 $S_{10} = \frac{n}{2} [a_1 + a_{10}]$ $\therefore S_{10} = \frac{10}{2} [2 + 29]$ \therefore answer is (c). Here $S_n = 525$, $a_1 = 3$, $a_n = 39$ 29. $S_n = \frac{n}{2} [a_1 + a_n]$ $\therefore 525 = \frac{n}{2} [3 + 39]$ $\therefore 525 = 21n$ \lambda 25 = n \therefore answer is (c). 3k - (k + 1) = (4k + 2) - 3k $\therefore 2k - 1 = k + 2$ ∴ k = 3 30. answer is (a). 32. Let A.P. be a, a + d, a + 2d \therefore t₅ = a + (5 - 1)d and t₁₃ = a + (13 - 1)d ∴ a=14 ∴ answer is (b). $a = 64, d = (60 - 64) = -4, t_n = 0$ 33. ∴ t = a + (n-1)d $\therefore 0 = 64 + (n - 1) - 4$ $\therefore 0 = 64 - 4n + 4$ ∴ - 68 = - 4n ∴ 17 = n

34. Here
$$a = 3, d = 3$$
 $S_n = \frac{n}{2} [2a + (n - 1)d]$
 $108 = \frac{n}{2} [6 + 3(n - 1)]$
 $\therefore = n^2 + n - 72 = 0$
 $\therefore = (n + 9) (n - 8) = 0$
 $\therefore n = 8$
 \therefore answer is (a).

 37. A. M. $= \frac{3+13}{2} = \frac{16}{2} = 8$
 \therefore answer is (b).

 38. Here $a = 2, d = 3$ and $t_n = 56$ then $n = ?$
 $\therefore t_n = a + (n-1)d$
 $\therefore 56 = 2 + (n-1)3$
 $\therefore 56 = 2 + 3n - 3$
 $\therefore 57 = 3n$
 $\therefore 19 = n$
 \therefore answer is (c).

39. Here a = 3, d = 5, n = 10

$$S_n = \frac{n}{2} [2a + (n - 1)d] \qquad \therefore S_n = \frac{10}{2} [2x3 + (10 - 1) \times 5]$$

 $\therefore S_n = 5[6 + 45] = 5 \times 51 = 255$

∴ Sn = 5[6 + 45] = 5 x 51 = 255 $40. Here a = 2, d = 3, S₁₂ = <math>\frac{12}{2}$ [3 x 12 + 1] = 6 x 37 = 222 ∴ answer is (b).

SAHAKAR DEFENCE

Grooming the **Leader**

7. Probability

Important Facts and Formulae

- **Experiment:** An operation which can produce some well-defined outcomes is called an experiment.
- **II. Random Experiment:** An experiment in which all possible outcomes are known and the exact output cannot be predicted in advance, is called a random experiment.

Examples of Performing a Random Experiment:

1] Rolling an unbiased dice.

- 2] Tossing a fair coin.
- 3] Drawing a card from a pack of well-shuffled cards.
- 4] Picking up a ball of certain colour from a bag containing balls of different colours.

Details:

- 1] When we throw a coin. Then either a Head (H) or a Tail (T) appears.
- 2] A dice is a solid cube, having 6 faces, marked 1, 2, 3, 4, 5, 6 respectively. When we throw a die, the outcome is the number that appears on its upper face.
- 3] A pack of cards has 52 cards.
- It has 13 cards of each suit, namely Spades, Clubs, Hearts and Diamonds.
- Cards of spades and clubs are black cards. Cards of hearts and diamonds are red cards.
- There are 4 honours of each suit. These are Aces, Kings, Queens and Jacks. These are called face cards.
- III. Sample Space: When we perform an experiment, then the set S of all possible outcomes is called the Sample Space.

Examples of Sample Spaces:

- 1] In tossing coin, S = {H, T}.
- 2] If two coins are tossed, then S = {HH, HT, TH, TT}.
- 3] In rolling a dice, we have, S = {1,2,3,4,5,6}.
- IV. Event: Any subset of a sample space is called an event.

V. Probability of Occurrence of an Event:

Let S be the sample space and let E be an event.

Then, $E \subseteq S$. $\therefore P(E) = \frac{n(E)'}{n(E)}$

VI. Results on Probability:

- 1] P(S) = 1 2] $0 \le P(E) \le 1$
- 4] For any events A and B, we have: $P(AUB) = P(A) + P(B) P(A \cap B)$.
- 5] If A denotes (not-A), then P (\overline{A}) = 1 P(A).

rooming the

3] P (ϕ) = 0

- Multiple Choice Questions
- 1. A coin is tossed twice. The probability of getting exactly one head and at least one head is

$$\frac{1}{2}, \frac{3}{4}$$
 b) $\frac{2}{3}, \frac{1}{4}$ c) $\frac{1}{4}, \frac{4}{5}$

2. Three unbiased coins are tossed. The probability of getting at most two heads is

c) $\frac{5}{36}$

$$\frac{1}{4}$$

a) -

а

- b) $\frac{3}{8}$ c) $\frac{7}{8}$
- 3. Two dice are thrown simultaneously. the probability of getting numbers whose sum is 6 or 8

$$\left(\frac{7}{18}\right)$$

4. A bag contains six black balls and eight white balls. One ball is drawn at random. What is the probability that the ball drawn is white?

d) $\frac{1}{8}$

d) $\frac{5}{18}$

d) $\frac{1}{2}$

a)
$$\frac{4}{7}$$
 b) $\frac{3}{4}$ c) $\frac{4}{5}$

b) $\frac{2}{2}$

5. A card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a

a)
$$\frac{4}{13}$$
 b) $\frac{3}{13}$ c) $\frac{2}{13}$ d) $\frac{1}{13}$

6. If the probability of occurrence of an event is 1/5, then the probability of non-occurrence of the event is

	a) $\frac{5}{6}$	b) $\frac{1}{6}$	c) $\frac{4}{5}$	d) $\frac{6}{5}$
7.	Ram & Shyam	are friends. Wha	at is the probabili	ity that both will have the same birthday? (Ignoring a leap
	year)	265	264	
	a) $\frac{1}{365}$	b) $\frac{365}{364}$	c) $\frac{364}{365}$	d) None of these
8.	Three unbiased	d coins are tosse	d. What is the pi	obability of getting at most 2 heads?
	a) $\frac{3}{5}$	b) $\frac{2}{5}$	c) $\frac{5}{8}$	d) $\frac{7}{8}$
9.	In a simultaned	ous throw of two	o dice, what is th	e probability of getting a total of 7?
	a) $\frac{1}{6}$	b) $\frac{1}{3}$	c) 3	d) $\frac{5}{6}$
10.	In box, there a	re 8 red, 7 blue,	and 6 green ball	s. One ball is picked up randomly. What is the probability that
	it is neither rec	nor green?		
	a) $\frac{2}{21}$	b) $\frac{5}{21}$	c) $\frac{6}{21}$	d) $\frac{\sigma}{21}$
11.	In a <mark>simultaneo</mark>	ous throw of two	o coins, the prob	ability of getting at least one head is:
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
12.	Thre <mark>e unb</mark> iased	d coins are tosse	d. What is the p	obability of getting at least 2 heads?
	a) $\frac{1}{4}$	b) $\frac{1}{2}$	c) $\frac{1}{3}$	d) $\frac{1}{8}$
13.	Three unbiased	d coins are tosse	d. What is the pi	obability of getting at most two heads?
	a) $\frac{3}{4}$	b) $\frac{1}{4}$	c) $\frac{3}{8}$	d) $\frac{7}{8}$
14.	In a sin <mark>gle th</mark> ro	w of a dice, wha	at is the probabili	ity of getting a number greater than 4?
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{2}{3}$	d) $\frac{1}{4}$
15.	In a simu <mark>ltanec</mark>	ous throw of two	o dice, what is th	e probability of getting a total of 7?
	a) $\frac{1}{6}$	b) $\frac{1}{4}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
16.	What is the pro	bability of getti	ng a sum 9 from	two throws of a dice?
	a) $\frac{1}{6}$	b) $\frac{1}{8}$	c) $\frac{1}{9}$	d) $\frac{1}{12}$
17.	In a simultaned	ous throw of two	o dice, what is th	e probability of getting a doublet?
	a) $\frac{1}{6}$	b) $\frac{1}{4}$	c) $\frac{2}{2}$	d) $\frac{3}{7}$
18.	In a simultaned	ous throw of two	o dice, what is th	e probability of getting a total of 10 or 11?
	a) $\frac{1}{4}$	b) $\frac{1}{c}$	c) $\frac{7}{12}$	d) $\frac{5}{2c}$
19.	Tickets numbe	red 1 to 20 are r	nixed up and the	n a ticket is drawn at random. What is the probability that
	the ticket draw	n bears a numb	er which is a mu	Itiple of 3?
	a) $\frac{3}{10}$	b) $\frac{3}{20}$	c) $\frac{2}{5}$	
20.	Tickets numbe	red 1 to 20 are <mark>r</mark>	nixed up and the	n a ticket is drawn at random. What is the probability that
	the ticket draw	n has a number	which is a multip	ple of 3 or 5?
	a) $\frac{1}{2}$	b) _ 5	c) $\frac{1}{15}$	d) $\frac{1}{20}$
21.	In a lottery, the getting a prize	ere are 10 prizes ?	and 25 blanks. A	A lottery is drawn at random. What is the probability of
	a) $\frac{1}{10}$	b) ² / ₅	c) $\frac{2}{7}$	d) $\frac{5}{7}$
22.	One card is dra card?	wn at random f	rom a pack of 52	cards. What is the probability that the card drawn is a face
	a) $\frac{1}{12}$	b) $\frac{4}{12}$	c) $\frac{1}{4}$	d) $\frac{9}{52}$
23.	A card is drawr	n from a pack of	⁴ 52 cards. The pr	obability of getting a queen of club or a king of heart is
	a) $\frac{1}{12}$	b) $\frac{2}{12}$	c) $\frac{1}{2c}$	d) $\frac{1}{r^2}$
24.	The probability	that a card drav	wn from a pack c	52 of 52 cards will be a diamond or a king is:

	a) $\frac{2}{13}$	b) $\frac{4}{13}$	c) $\frac{1}{13}$	d) $\frac{1}{52}$
25.	A bag contains drawn is white	6 black and 8 wh ?	nite balls. One ba	all is drawn at random. What is the probability that the ball
	a) $\frac{3}{4}$	b) $\frac{4}{7}$	c) $\frac{1}{8}$	d) $\frac{3}{7}$
26.	In a box, there that it is neithe	are 8 red, 7 blue r red nor green?	and 6 green bal	lls. One ball is picked up randomly. What is the probability
	a) $\frac{2}{3}$	b) $\frac{3}{4}$	c) $\frac{7}{19}$	d) $\frac{8}{21}$
27.	A box contains the probability	4 red balls, 5 gre that the ball dra	en balls and 6 w wn is either red	white balls. A ball is drawn at random from the box. What is or green?
	a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\frac{1}{5}$	d) $\frac{7}{15}$
28.	A box contains box. The proba	20 electric bulbs bility that at leas	, out of which 4 at one of these is	are defective. Two bulbs are chosen at random from this defective, is:
	a) $\frac{4}{19}$	b) $\frac{7}{19}$	c) $\frac{12}{19}$	d) $\frac{21}{95}$
29.	In a class, 30% selected at ran	of the students of the student	offered English, 2 probability that	20% offered Hindi and 10% offered both. If a student is the has offered English or Hindi?
	a) $\frac{2}{5}$	b) $\frac{3}{4}$	c) $\frac{3}{5}$	d) $\frac{3}{10}$
30.	Two d <mark>ice ar</mark> e to	ossed. The proba	bility that the to	tal score is a prime number is:
	a) $\frac{1}{6}$	b) $\frac{5}{12}$	c) $\frac{1}{2}$	d) $\frac{7}{9}$
31.	A boy t <mark>hrow</mark> a d	die once then the	e probability of ${\mathfrak g}$	getting a number greater than 4 is:
	a) $\frac{1}{2}$	b) $\frac{1}{4}$	c) $\frac{1}{3}$	d) $\frac{1}{8}$
32.	One card is dra	wn from a well s	huffled deck of	52 cards, then the probability that th <mark>e card</mark> on ace is:
	a) $\frac{1}{13}$	b) $\frac{2}{13}$	c) $\frac{1}{26}$	d) $\frac{1}{52}$
33.	In a throw <mark>of a</mark>	dies, the probab	ility of getting a	prime number is:
	a) 6	b) $\frac{1}{2}$	c) 2	d) $\frac{3}{2}$
34.	A book contain	ing 80 pages is o	pened at randor	m of the probability that a doub <mark>let pag</mark> e is found is:
	a) $\frac{1}{80}$	b) $\frac{7}{80}$	c) $\frac{3}{80}$	d) None of these
35.	A coin is tossed	than the probab	oility of getting a	a head is:
	a) $\frac{1}{2}$	b) 1	c) 0	d) None of these
36.	Three coins are	e tossed simultan	eously then the	probability of getting almost one tail is:
	a) 1	b) $\frac{1}{2}$	c) 3 Groo	$d)\frac{1}{3}g$ the
37.	A die is thrown	, then the proba	bility of the ever	nt of getting an even number is:
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) 2	d) $\frac{3}{2}$
38.	A bag contains that the red or	5 red, 8 white ar white ball drawr	nd <mark>7 black balls</mark> .	A ball is drawn at known from the bag, then the probability
	a) $\frac{11}{20}$	b) $\frac{9}{20}$	c) $\frac{13}{20}$	d) $\frac{7}{20}$
39.	A die is thrown	then the probab	oility of getting e	even number is:
	a) 1	b) $\frac{1}{3}$	c) $\frac{1}{2}$	d) $\frac{1}{6}$
40.	A card is drawn	from pack of 52	cards the proba	ability that it is either a spade or a king is:
	a) $\frac{1}{20}$	b) $\frac{4}{13}$	c) $\frac{17}{52}$	d) $\frac{15}{52}$
41.	Tickets number probability that	red from 1 to 25 t the drawn ticke	are mixed up to t has a prime nu	gether and then a ticket is drawn at random. What is the umber?
	a) 7 25	b) $\frac{1}{25}$	c) $\frac{9}{25}$	d) $\frac{11}{25}$

42.	A box contract that the	A box contains cards marked with the numbers 1 to 25 one card is drawn from this box, then the probability that the number on the card is a perfect square:											
	a) $\frac{1}{5}$		b) $\frac{2}{5}$		c) $\frac{4}{5}$		d) $\frac{3}{5}$						
43.	A die is	thrown	then the	e probak	oility tha	t an odd	l <mark>nu</mark> mbe	r comes	up is:				
	a) $\frac{1}{2}$		b) $\frac{1}{3}$		c) $\frac{1}{4}$		d) $\frac{1}{6}$						
44.	Two dio	e are th	rown th	en the p	robabili	ty that t	he sum	of the n	umbers	on the d	ice is divis	sible by §	Ə is:
	a) $\frac{1}{6}$		b) $\frac{1}{4}$		c) $\frac{1}{9}$		d) $\frac{1}{3}$						
45.	A bag c	ontains 3	3 white	and 5 re	d balls. I	<mark>lf a ball</mark> i	is drawn	at rand	om, the	probabi	lity that tl	he drawr	n ball is red
	a) $\frac{3}{8}$		b) ⁵ / ₈		c) $\frac{3}{15}$		d) $\frac{5}{15}$						1
46.	An unbi	ased die	is throw	wn then	the pro	bability	that the	number	on the	upper m	l <mark>ost face</mark> o	of the die	e is a
	perfect	square i	S:		. 1		. 2						
	a) $\frac{1}{2}$		b) $\frac{1}{3}$		c) $\frac{2}{4}$		d) _ 3	113					
47.	A coin i	s tossed	then pro	obability	of gett	ing a tai	l is:	(\cdot , \cdot)					
	a) $\frac{-}{2}$		b) $\frac{-}{3}$		c) $\frac{-}{4}$		d) Non	e of the	se .				
48.	An unbi	ased die	e is throw	wn then	the pro	bability	that the	number	r on the	upper m	ost face i	s divisibl	e by 2 is:
	a) $\frac{1}{2}$		b) $\frac{1}{3}$		c) $\frac{-}{4}$		d) _ 3						
49.	When t	wo coins	s are tos	sed the	n probak	oility of	getting c	one head	ds is:				
	a) $\frac{2}{3}$		b) <u>-</u> 4		c) $\frac{1}{3}$		d) Non	e of the	se				
50.	Two fai	r coins a	re tosse	d in the	same tii	me. The	probabi	lity of ge	etting at	least on	e tail is:		
	a) $\frac{-}{2}$		b) $\frac{-}{4}$		c) $\frac{-}{4}$		d) Non	e of the	se				
	Answer	· Keys			_								
	1. a	2. c	3. d	4. a	5. a	6. c	7. a	8. d	9. a	10. d			
	11. d	12. b	13. d	14. b	15. a	16. c	17. a	18. d	19. a	20. d			
	21. c	22. b	23. c	24. b	25. b	26. d	27. b	28. b	29. a	30. b			
	31. c	32. a	33. b	34. b	35. a	36. b	37. a	38. c	39. b	40. b			
	41. c	42. a	43. a	44. c	45. b	46. b	47. a	48. a	49. d	50. c			
1	HINTS AND SOLUTIONS												
1.	Let S be the sample space. \therefore S = {HH, HI, IH, II} \therefore n(S) = 4												
	$\therefore E_1 = \{ $	HT, TH} =	\Rightarrow n(E ₁) =	= 2	and E ₂	= {HH, H	IT, TH} =	\Rightarrow n(E ₂) =	3				
	∴ P(E ₁)	$=\frac{n(E1)}{m(E1)}=$	$\frac{2}{1} = \frac{1}{1}$		$P(E_2) =$	$\frac{n(E2)}{m(E2)} = \frac{1}{2}$	<u>a</u> ade						
4.	Here, n	n(S) (S) = ⁶⁺⁸ C	$4 2^{1}$ $C_1 = {}^{14}C_1 =$	= 14 and	l n(E) = ⁸	n(S) ${}^{3}C_{1} = 8$	4 ∴ P(E) =	$=\frac{n(E)}{n(S)}=$	$\frac{8}{14} = \frac{4}{7}$				
5.	Here, n	(S) = ⁵² C ₁	. = 52 an	id n(E) =	¹³ C ₁ + ³ (C ₁ = 13 +	- 3 = 16	∴ P(E) :	$=\frac{n(E)}{n(S)}=$	$\frac{16}{52} = \frac{4}{13}$			
6.	Here, $P(E) = \frac{1}{5}$ \therefore $P(E') = 1 - P(E) = 1 - \frac{1}{5} = \frac{4}{5}$.												
7.	Here, n	(S) = 365	5 × 365	∴ n(E) =	365	∴ P(E) :	$=\frac{n(E)}{n(S)}=$	365 365 × 365	$=\frac{1}{365}$				
9.	We kno	w that i	n a simu	ltaneou	s throw	of two d	dice, n(S)	= (6 × 6	5) = 36				
	Let E =	Event of	getting	total of	7 = {(1, 6	6), (2, 5)	, (3, 4), (4, 3), (5	, 2), (6, 1	L)} = 6			
	∴ P(E) =	$=\frac{n(E)}{n(S)}=\frac{e}{3}$	$\frac{1}{6} = \frac{1}{6}$										
10.	Total nu	umber o	f balls =	(8+7+6)	= 21		-						
	Let E =	Event th	at the ba	all draw	n is neitl	her red	nor gree	n = Ever	nt that tl	ne ball d	rawn is re	ed	
	∴ n(E) =	8		∴ P(E) =	$=\frac{8}{21}$								

11. Here $S = \{HH, HT, TH, TT\}$. Let E = event of getting at least one head = {HT, TH, HH}. $\therefore \mathsf{P}(\mathsf{E}) = \frac{\mathsf{n}(\mathsf{E})}{\mathsf{n}(\mathsf{S})} = \frac{3}{4}$ 12. Here S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH}. Let E = event of getting at least two heads = {THH, HTH, HHT, HHH}. $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{4}{8} = \frac{1}{2}.$ Here S = {TTT, TTH, THT, HTT, THH, HTH, HHT)}. \therefore P(E) = $\frac{n(E)}{n(S)} = \frac{7}{8}$ 13. 14. When a die is thrown, we have $S = \{1, 2, 3, 4, 5, 6\}$. Let E = event of getting a number greater than $4 = \{5, 6\}$. : P (E) = $\frac{n(E)}{n(S)} = \frac{2}{6} = \frac{1}{3}$ We know that in a simultaneous throw of two dice, $n(S) = 6 \times 6 = 36$. 15. Let $E = event of getting a total of 7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.$ $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$ 16. In two throws of a die, $n(S) = (6 \times 6) = 36$. Let E = event of getting a sum 9 = {(3, 6), (4, 5), (5, 4), (6, 3)}. $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{4}{36} = \frac{1}{9}$ 17. In a simultaneous throw of two dice, $n(S) = (6 \times 6) = 36$. Let E = event of getting a doublet = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}. $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$ In a simultaneous throw of two dice, we have $n(S) = (6 \times 6) = 36$. 18. Let $E = event of getting a total of 10 or 11 = {(4, 6), (5, 5), (6, 4), (5, 6), (6, 5)}.$ $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{5}{36}$ Here, S = {1, 2, 3, 4,, 19, 20}. 19. Let $E = event of getting a multiple of 3 = \{3, 6, 9, 12, 15, 18\}.$ \therefore P (E) = $\frac{n(E)}{n(S)} = \frac{6}{20} = \frac{3}{10}$ 20. Here, S = {1, 2, 3, 4,, 19, 20}. Let E = event of getting a multiple of 3 or 5 = {3, 6, 9, 12, 15, 18, 5, 10, 20} : P (E) = $\frac{n(E)}{n(S)} = \frac{9}{20}$. P (getting a prize) = $\frac{10}{(10+25)} = \frac{10}{35} = \frac{2}{7}$ 21. Clearly, there are 52 cards, out of which there are 16 face cards. 22. \therefore P (getting a face card) = $\frac{16}{52} = \frac{4}{13}$. 23. Here n (S) = 52. Let E = event of getting a queen or club or a king of heart. \therefore P (E) = $\frac{n(E)}{n(S)} = \frac{2}{52} = \frac{1}{26}$ Then n(E) = 224. Here, n (S) = 52. There are 13 cards of diamond (including one king) and there are 3 more kings. Let E = event of getting a diamond or a king. : P (E) = $\frac{n(E)}{n(S)} = \frac{16}{52} = \frac{4}{13}$. Then n(E) = (13+3) = 16. Total number of balls = (6+8) = 14. Number of white balls = 8. 25. P (drawing a white ball) = $\frac{8}{14} = \frac{4}{7}$. Total number of balls = (8+7+6) = 21. 26. Let E = event that the ball drawn is neither red nor green = event that the ball drawn is red.

	n (E) = 8. \therefore P (E) = $\frac{8}{21}$.								
27.	Total number of balls = $(4+5+6) = 15$. \therefore n (S) = 15.								
	Let E_1 = event of drawing a red ball and E_2 = event of drawing a green ball.								
	Then, E1 \cap E2 = ϕ . P (E1 or E2) = P(E1) + P(E2) = $\left(\frac{4}{15} + \frac{5}{15}\right) = \frac{9}{15} = \frac{3}{5}$.								
28.	P (None is defective) = $\frac{16_{C_2}}{20_{C_2}} = \left(\frac{16 \times 15}{2 \times 1} \times \frac{2 \times 1}{20 \times 19}\right) = \frac{12}{19}$								
	P (at least one is defective) = $\left(1 - \frac{12}{19}\right) = \frac{7}{19}$								
29.	P (E) = $\frac{30}{100} = \frac{3}{10}$, P(H) = $\frac{20}{100} = \frac{1}{5}$ and P (E \cap H) = $\frac{10}{100} = \frac{1}{10}$								
	P (E or H) = P(EUH) = P(E) + P(H) - P (E \cap H) = $\left(\frac{3}{10} + \frac{1}{5} - \frac{1}{10}\right) = \frac{4}{10} = \frac{2}{5}$.								
30.	Clearly, $n(S) = (6 \times 6) = 36$.								
	Let E = Event that the sum is a prime number.								
	Then, E = {(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3),) (5, 2), (5, 6), (6, 1), (6, 5)}.								
	\therefore n (E) = 15. \therefore P (E) = $\frac{n(E)}{n(S)} = \frac{15}{36} = \frac{5}{12}$								
31.	Here, let E be the event getting a number greater than 4. The number of possible outcomes is six: 1, 2, 3, 4, 5 and 6, and the outcomes favourable to E are 5 and 6.								
	There <mark>fore,</mark> the number of outcomes favourable to E is 2.								
	So, P (E) = P(number greater than 4) = $\frac{2}{6} = \frac{1}{3}$								
32.	Well-shuffling ensures equally likely outcomes,								
	There a <mark>re 4 a</mark> ces in a deck. Let E be the event 'the card is an ace'.								
	The number of outcomes favourable to E = 4								
	The number of possible outcomes = 52. Therefore, P (E) = $\frac{4}{52} = \frac{1}{13}$								
33.	E= {2, 3, 5} ∴ n(E) = 3 & S = {1, 2, 3, 4, 5, 6} ∴ n(S) = 6								
	$\therefore P(E) = \frac{n(E)}{n(S)} = \frac{3}{6} = \frac{1}{2}.$								
34.	$E = \{11, 22, 33, \frac{44}{5}, 55, 66, 77\} \therefore n (E) = 7$								
	And S = {1, 2, 3, 80} \therefore n (S) = 80 \therefore P (E) = $\frac{7}{80}$								
35.	Let S be the sample space. \therefore S = {H, T} \therefore n(S) = 2.								
	Let A be the event of getting head. \therefore A = {H} \therefore n (A) = 1 \therefore P (A) = $\frac{1}{2}$								
36.	Let C be the eve <mark>nt o</mark> f getting atmost one tail								
	\therefore n (C) = 4 \therefore P(C) = $\frac{n(C)}{n(S)} = \frac{4}{8} = \frac{1}{2}$. Grooming the								
37.	Let S be the sample space. \therefore S = {1, 2, 3, 4, 5, 6} \therefore n (S) = 6.								
	Let B be the event of getting an even number \therefore B = {2, 4, 6} \therefore n (B) = 3								
	$\therefore P(B) = \frac{n(B)}{n(S)} = \frac{3}{6} = \frac{1}{2}.$								
38.	Total balls = 5 red + 8 white + 7 black balls = 20 balls.								
	P (red or white) = $\frac{\text{No. of favourable outcomes}}{\text{total no.of outcomes}} = \frac{5+8}{20} = \frac{13}{20}$								
40.	n (S) = 52. Let E = Event of getting a space & F = Event of getting a king of space.								
	Then, n (E) = 13, n (F) = 4, n (E \cap F) = 1								
	$P(E) = \frac{13}{52} = \frac{1}{4} \qquad P(F) = \frac{4}{52} = \frac{1}{13} \text{ and } P(E \cap F) = \frac{1}{52}$								
	P (E or F) = P(E \cap F) $\therefore \left(\frac{1}{4} + \frac{1}{13} - \frac{1}{52}\right) = \frac{10}{52} = \frac{4}{13}.$								
41.	S = {1, 2, 3, 4,								
	n (S) = 25 and n (E) = 9 P(E) = $\frac{n(E)}{n(S)} = \frac{9}{25}$								
42.	Let S be the sample space. \therefore S = {1, 2, 3,								

Let B be the event that the number on the card drawn is a perfect square.

 $\begin{array}{ll} \therefore \ \mathsf{B} = \{1, \, 4, \, 9, \, 16, \, 25\} & \therefore \ \mathsf{n}(\mathsf{B}) = 5\\ \therefore \ \mathsf{P}(\mathsf{B}) = \frac{\mathsf{n}(\mathsf{B})}{\mathsf{n}(\mathsf{S})} = \frac{5}{25} = \frac{1}{5}. \end{array}$

43. Let S be the sample space. Then, $S = \{1, 2, 3, 4, 5, 6\}$ \therefore n (S) = 6. Let A be the event where an odd number comes up.

Then, A = {1, 3, 5} \therefore n (A) = 3 \therefore P(A) = $\frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2}$.

44. The sample space is

 $S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$

This contains 36 sample points. \therefore n (S) = 36.

Let B be the event that the sum of the numbers on the dice is divisible by 9.

Then, B = {(3, 6), (4, 5), (5, 4), (6, 3)}
$$\therefore$$
 n(B) = 4 \therefore P(B) = $\frac{n(B)}{n(S)} = \frac{4}{36} = \frac{1}{9}$.
45. n (E) = 5 & n (S) = 3+5 = 8 \therefore P(E) = $\frac{n(E)}{n(S)} = \frac{5}{8}$
47. A coin is tossed then n (S) = 2 \therefore Let event be a getting tail is n (A) = 1.

47. A coin is tossed then n (S) = 2
$$\therefore$$
 Let event be a gettin
 $\therefore P(A) = \frac{n(A)}{n(S)} = \frac{1}{2}$

48. Since n (S) = 6. Let b is event that it is divisible by 2.

 $\therefore B = \{2, 4, 6\} \quad \therefore n (B) = 3 \qquad \therefore P(B) = \frac{n(B)}{n(S)} = \frac{3}{6} = \frac{1}{2}.$

49. If two coins are tossed. \therefore S= {TT, TH, HT, HH} \therefore n (S) = 4 Let E be event that one head \therefore E = {TH, HT} \therefore n (E) = 2 \therefore P(E) = $\frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$.

50. Since n (S) = 4 \therefore n(A) = {HT, TH, TT} \therefore P(A) = $\frac{3}{4}$ Let A be event that getting atleast one tail. \therefore n (A) = 3.

> Grooming the Leader
8. Statistics

Important Facts and Formulae

I. Introduction:

Statistics is the branch of Mathematics which deals with the collection, presentation and analysis of numerical data and draws conclusions on the basis of the same.

Statistical techniques are used in the field of research.

Statistics is used in the study of Economics, Psychology, Physics, Biology, Medicines, etc.

Some basic concepts and the terms:

- 1] Data: Data is a collection of figures or numbers about any subject.
- 2] **Population:** Population is a set of well defined objects about which statistical information is required.
- **3] Sample:** A sample is any finite set of objects drawn from the population, i.e., a sample is a subset of population.
- 4) Variate: A quantitative characteristic is called a variate. A variate is expressed in numbers. There are two types of variates:
 - A) D<mark>iscret</mark>e variate and
 - B) Continuous variate

A) Discrete variate takes integral values. For example: Number of children in a family, number of flowers on a tree, etc.

B) Continuous variate takes any real value within a certain interval.

e.g. Rainfall in a city, weight-height of students, etc.

5] Attribute: A qualitative characteristic is called an attribute. It cannot be described numerically.
 e.g. The population can be divided into categories like, 'male' and 'female', 'Literate' and 'illiterate'.

II. Characteristic:

Basic terms in statistics:

- 1. Class: When the observation are divided into suitable groups. Each of the group is called class.
- 2. Class limit: Each class is bounded by two quantities, called class limits. The quantities on the left side are called lower limit while on the right side are called upper limit.
- **3. Frequency:** The total number of observation in each class is frequency. Eg. There are 20 observation in class 11-15. Hence frequency is 20.
- 4. Class width: When continuous classes are given, the difference between Upper class limit and lower class limit is known as class width.

Eg. 5-10, 10-15, 15-20 ,..... class width is 10 - 5 = 5.

5. Class mark: The middle value of the selected class size or the average of Upper class limit and lower class limit.

It can be calculated as: Class mark = Lower class limit + Upper class limit

III. Measures of Central Tendency

The number around which the numbers in the data tend to cluster is called measure of central tendency. The measure is representative of the data.

There are three widely used measures of central tendency.

1) Arithmetic Mean 2) Median and 3) Mode.

1] Arithmetic Mean: The arithmetical average of all observation in the given data is known as its arithmetic mean.

a] Mean of Ungrouped Frequency Distribution:

If x1, x2,...., xn are the values of a variable x, their mean is denoted by and is given as

 $\overline{\mathbf{x}} = \frac{\mathbf{x}\mathbf{1} + \mathbf{x}\mathbf{2} + \dots + \mathbf{x}\mathbf{n}}{N} = \frac{1}{N}\sum_{i} \mathbf{x}\mathbf{i}$

where, N is the number of observations.

b] Mean of a Grouped Frequency Distribution:

There are three methods of computing the mean of a grouped data: A) Direct Method

B) Assumed Mean Method C) Step-deviation Method

i) Direct Method:

Step-1: In the table, make columns of values of $x_1, x_2, ..., x_n$ of a variable x with corresponding frequencies f_1 , $f_2, ..., f_n$.

Step-2: Find class marks x_{i.}

Step-3: Make a column of f_ix_i.

Step-4: Find Σ f_ix_i.

Step<mark>-5: Find Σ f</mark>i.

Step-6: Find $\overline{x} = \frac{\Sigma \text{ fixi}}{\Sigma \text{ fi}}$

ii) Assu<mark>med</mark> Mean Method

This method of solving the problem consists of the following steps:

Step-1: In the table, make columns of values of $x_1, x_2, ..., x_n$ of a variable x with corresponding frequencies f_1 , $f_2, ..., f_n$.

Step-2: Find class marks x_i

Step-3: Take any value of class mark as assumed mean A. Generally take middle value as A.

Step-4: Make a column of $d_i = x_i - A$, d_i is called the deviation of x_i from A.

Step-5: Make a column of f_id_i.

Step-6: Fi<mark>nd Σ f</mark>idi.

Step-7: Find Σ f_i.

Step-8: Find $\overline{d} = \frac{\Sigma \text{ fidi}}{\Sigma \text{ fi}}$

Step-9: Mean<mark>: x̄ = A</mark> + d̄

iii) Step-deviation Method:

In the step-deviation we follow the 4 steps same as assumed mean method, Step-5: Take G.C.D. of all values of d_i and we create a column for all u_i where, $u_i =$ Step-6: Make a column of $f_i u_i$. Find $\Sigma f_i u_i$.

Step-7: Find Σ f_i.

Step-8: Find $\overline{u} = \frac{\Sigma \text{ fiul}}{\Sigma \text{ fi}}$

Grooming the

Step-9: Mean: $\overline{x} = A + \overline{u} g$

Median: Median is the middle most term when the data is arranged in ascending or descending order.

a) Ungrouped data:

- If the number of terms, n is odd Median = (ⁿ⁺¹/₂) term
 If the number of terms, n is even
- If the number of terms, n is even Median = $\frac{1}{2} \left[\left(\frac{n}{2} \right)$ th term + $\left(\frac{n}{2} + 1 \right)$ th term

b) Grouped data:

Formula for finding the median of a grouped frequency distribution:

Median = L + $\frac{\frac{N}{2} - c.f.}{f} \times h$

where, L = lower boundary of the median class.

N = total frequency.

C.f. = cumulative frequency of the class preceding the median class.

2]

f = frequency of the median class.

h = width of the median class.

3] Mode: The maximum occurred value among the observation is called mode.

a) Ungrouped data: In the raw data the observation repeating maximum number of times is mode.b) Grouped data:

Mode of grouped frequency distribution is calculated using the following formula:

Mode = L +
$$\left[\frac{f_m - f_1}{2f_m - f_1 - f_2}\right] \times h$$

where, L = lower boundary of the modal class.

 f_m = frequency of the modal class [Modal class = A class which has maximum frequency.]

 f_1 = frequency of the class preceding the modal class.

 f_2 = frequency of the class succeeding the modal class.

h = width of the modal class.

Multiple Ch<mark>oice Questions</mark>

1. Find the mean of the daily income from the following frequency distribution:

Dail <mark>y Incom</mark> e (in Rs)	100-150	150-200	200-250	250-300	300-350	350-40 <mark>0</mark>
Num <mark>ber o</mark> f Wor <mark>kers</mark>	2	7	9	8	6	4

a) 250 Rs b) 254.17 Rs c) 127 Rs d) 235.20 Rs

2. The measurements (in mm) of the diameters of the head of the screws are given below:

Diamet <mark>er (in m</mark> m)	33-35	36-38	39-41	42-44	45-47
Number <mark>of screw</mark>	17	19	23	21	27

Calculate mean diameter of the head of the screws.

a) 40.6 mm b) 40.2 mm c) 40 mm d) 38 mm

3. Find the mean marks from the frequency distribution given below:

Marks	0-1 <mark>0</mark>	<u>10-20</u>	20-30	30-40	40-50	50-60	60-70	70- <mark>80</mark>	80-90	90-100
Number of Students	3	5	7	10	12	15	12	6	2	8

d) 54

a) 51 b) 57 c) 51.75

4. Find the mean of rainfall (in cm) from the frequency distribution given below:

Rain fall (in cm)	36-4 <mark>0</mark>	<mark>40-</mark> 44	44-48	48-52	52-56	<mark>56-60</mark>	60-64
Number of days	6	7	10	ader	7	9	4

a) 49.6 cm b) 50 cm c) 52 cm d) 48 cm

5. Find the median:

Class		6-10	11 -15	16-20	<mark>21-25</mark>	26-30
Frequency		20	30	50	40	10
a) 12	b) 15	C) 18	d) 20		

6. Calculate the median:

Weight (in l	<g)< th=""><th>30-35</th><th>35-40</th><th>40-45</th><th>45-50</th><th>50-55</th><th>55-60</th></g)<>	30-35	35-40	40-45	45-50	50-55	55-60
No. of Stud	ents	12	18	22	27	10	11
a) 45 kg	b) 4	4.54 kg	c) 42.59	kg d) 4	6.64 kg		

7. Calculate the median:

Class 5-9 10-14 15-19 20-24 25-29 30-34 35-39	
---	--

	Frequency	3	12	29		47	19	12		5				
	a) 21.57	b) 20.6	c)	22.7		d) 24	4.6				1			
8.	Calculate the	mode:												
	No. of absent	t days (x)	0-10	10-20	20)- <mark>30</mark>	30-40	40-50						
	No. of Studer	nts (F)	30	70	50)	45	40						
	a) 15 absent d	ays	b) 18 abse	ent days	С) 15.2 a	<mark>ibsent</mark> da	ys d)1	6.67	absent o	days			
9.														
	Class	35-40	40-45	45-50		50-55	55- <mark>60</mark>							
	Frequency	7	6	9	!	5	3							
	Calculate the r	mode.							_					
	a) 74.1	b) 44.2	c)	42.44		d) 4 ⁻	7.14							
10.	Find the mode	2:		11		λ								
	Cla <mark>ss</mark>	0-10	10-20	20-30		30-40								
	Fre <mark>quenc</mark> y(F)	2	4	9		7								
	a) 27 <mark>.14</mark>	b) 26.2	c)	25.5		d) 2	2.2							
11.	The v <mark>alue o</mark> f th	he mode i	n the follo	wing free	que	ncy dis	tribution	table is		·				
	Mark <mark>s</mark>	0-10	10-20	20-30		30-40	40-50	0 50-	60	60-70)			
	Frequ <mark>ency</mark>	5	15	20		20	32	14		14				
	a) 43	b) 42	c)	41		d) 4	4		Π.					
12.	For a gro <mark>uped</mark>	frequenc	y distributi	ion, the r	ela	tion be	tween m	ean, mo	de a	nd medi	an <mark>is</mark> :			
	a) Mode <mark>= 3 m</mark>	nedian - 2	mean	b)	Mo	ode = m	nedian - 2	mean						
	c) Mode = <mark>2 m</mark>	<mark>ied</mark> ian - m	ean	d)	2 n	nedian	- 3 mean							
13.	For a grouped	frequenc	y distributi	ion mear	1 = 2	24. 6 ai	nd mode	= 29.1 tl	nen r	nedian =	:?			
1.4	a) 26	b) 26. 1	C)	27		d) 2.	5.3							
14.	IS NOT a	tion	b) arithm	tendency	/. >	c) m	odian	d) m	odo					
15	Mean and me	dian of a s	of num	hers 7 ar	י א אינ	c) III	eulan stively Th	u) mo	Jue 10 =?					
15.	a) 10	b) 9	c)	11		d) 1	2	ien moe	.c -:					
16.	Mean of some	e scores is	10. If each	score is	mι	ultiplied	by 4, the	e mean						
	a) 50	b) 60	c)	14		d) 40	D C							
17.	The mode of t	he given o	listributior	nis: Gl										
	Weight (in kg	;) 40) 43		46	.eac	49	52		55				
	No. of Childre	en 5	8		16		9	7		3				
	a) 40	b) 46	c)	55		d) N	one <mark>of th</mark>	ese						
18.	The median of	f the follo	wing distri	bution is	•									
	Class -interva	al 35-45	5 45	-55	5 <mark>5</mark> -	65 6	5 <mark>-70</mark>							
	Frequency	8	12		20	1	10							
	a) 56.5	b) 57.5	c)	58.7		d) 5	Ð							
19.	The standard of	deviation	for the dat	ta:										
	a) 2.4	b) 2.5	c)	2.7		d) 2.	.8							
20.	For a certain f value of mode	requency ::	distributio	n, values	of	mean	and medi	an are 6	2.6 a	and 62.5	respe	ctivel	y. Fin	d the
	a) 6.23	b) 62.3	c)	63.5		d) 6	2.5							
21.	Histogram cor	nsist of	·											

a) Sectors b) Rectangles c) Tria	ngles d) Squares
----------------------------------	------------------

22. The width of a rectangle in a histogram represents:

a) mid-values of the class b) class-interval c) frequency of the class d) number of classes

- 23. In a histogram:
 - a) The widths of all rectangles are equal
 - b) The lengths of all rectangles are equal
 - c) The lengths & width of all rectangles are equal
 - d) The length & width of each rectangle are in proportion
- 24. In a frequency polygon are used.
 - a) Mid points of classes and frequencies.
 - b) End points of classes and frequencies.
 - c) Upper boundaries of classes less than cumulative frequencies.
 - d) Lower boundaries of classes, greater than cumulative frequencies are used.
- 25. For drawing less than cumulative frequency
 - a) Upper boundaries of classes, cumulative frequencies.
 - b) Lower boundaries of classes, cumulative frequencies.
 - c) Mid-values of classes, cumulative frequencies.
 - d) Upper boundaries of classes, less than cumulative frequencies.

Answ<mark>er Key</mark>s

1. b	2. a	3. c	4. a	5. c	6. b	7. a	8. d	9. d	10. a
11. <mark>d</mark>	12. a	13. b	14. a	15. a	16. d	17. b	18. b	19. d	20. b
21. b	<mark>22</mark> . b	23. a	24. a	25. d					

HINTS AND SOLUTIONS

ົ	
~	

Diameter <mark>(in mm</mark>)	Class Marks	No. of Screw	fi × xi					
	(xi)	(fi)						
33-35	34	17	578					
36-38	37	19	703					
39-41	40	23	920					
42-44	43	21	903					
45-47	<mark>46</mark>	²⁷ cominc	1242					
Total		∑ fi = 107	∑ fi × xi = <mark>4346</mark>					
fi × xi = 4346, Σ fi = 107 = $\bar{x} = \frac{\sum fi × xi}{\sum fi} = \frac{4346}{107} = 40.6$ answer is (a).								

7.

Class	Class Boundary	Frequency	C.F.
5-9	4.5-9.5	3	3
10-14	9.5-14.5	12	15
15-19	14.5-19.5	29	44
20-24	19.5-24.5 (Median Class)	47	$91\frac{N}{2} = 63.55$
25-29	24.5-29.5	19	100
30-34	29.5-34.5 12		122
35-39	34.5-39.5	5	127

	Total		∑ fi = 127					
	N = 127. $\frac{N}{2} = \frac{1}{2}$	$\frac{27}{2} = 63.5$						
	19.5 - 24.5 is median class. L = 19.5, f = 47, c.f. = 44, h = 5							
	Median = L + $\frac{\frac{N}{2} - c.f.}{f} \times I$	h = 19.5 + $\frac{63.5 - 44}{47}$	⁴ x 5 = 19.5 + 2.	07 = 21.57.	\therefore answer is (a).			
11.	Mode = L + $\left[\frac{f_m - f_1}{2f_m - f_1 - f_1}\right]$	$\frac{1}{f_2}$ × h						
	∴ Modal Class = 40 - 5	0° \therefore f ₁ = 20, f ₂ = 14	, <i>f_m</i> = 32	∴ h = 50 - 40 = 1	.0			
	L = Lower boundary o	f the model class =	<mark>= 40</mark>					
	$\therefore \text{ Mode} = 40 + \left[\frac{32}{2 \times 32}\right]$	$\begin{bmatrix} -20 \\ -20-14 \end{bmatrix} \times 10 = 40$	$+\frac{12}{30} \times 10 = 40 +$	4 = 44 ∴ answe	er is (d).			
13.	Mode = 3 median - 2 i	mean ∴ 29.1 =	= 3 median - 2 >	< 24.6				
	$\therefore 29.1 + 2 \times 24.6 = 3 \text{ m}$	nedian 👶 29.1 -	+ 49.2 = 3 medi	an $\therefore \frac{78.3}{3} =$	median			
	∴ 26 <mark>.1 = median.</mark>	∴ answer is (b).						
15.	Mod <mark>e = 3</mark> median - 2 i	mean = 3 (8) - 2 (7) = 24 - 14 ∴ Mo	ode = 10 ∴ answe	er is (a).			
17.	Clea <mark>rly, 46</mark> occurs mo	st often. So, mode	= 46. ∴ ansv	ver is (b).				
18.		1						
	Clas <mark>s Inte</mark> rval	Frequency	Cumulative t	frequency				
	35-4 <mark>5</mark>	8	8					
	45-55	12	20					
	55-65	20	40					
	65-75	10	50					
	Here, N = $\frac{50.80}{2}$, $\frac{N}{2}$ = 2	25						
	25 lies in th <mark>e class</mark> inte	erval 55-65.						
	∴ L1 = 55, L2 <mark>= 65, N</mark> =	50 <mark>,</mark> C.f. = 20 and f	= 20					
	Median = $L_1 + \frac{(L_2 - L_1)}{f}$	$x\left(\frac{N}{2}-c.f.\right) = 55$	$+\frac{65-55}{20}$ x (25 >	< 20) = 57.5	∴ ans <mark>wer is (</mark> b).			
19.	$M = \frac{7+9+11+13+15}{5} = \frac{55}{5}$	$\frac{5}{2} = 11.$	20					
	$5^{5} 5^{5}$	$-11 ^{2} + 11-11 ^{2}$	+ 13–11 ² + 1	$ 5-11 ^2 = 40$				
	$\therefore \sigma = \sqrt{\frac{\Sigma \delta^2}{N}} = \sqrt{\frac{40}{\pi}} = \sqrt{\frac{1}{2}}$	$\overline{8} = 2\sqrt{2} = 2 \times 1.41$	L = 2.8 ∴ ansv	ver is (d).				
20	$\sqrt{N} \sqrt{\sqrt{5}}$ Mean - Mode = 3 (Mean	an - Median)						
20.	$\therefore 62.6 - mode = 3 (62)$.6 - 62.5)	∴ 62.6 - mode	= 3 (0.1) ·· 62.6 -	mode = 0.3			
	∴ mode = 62.3	∴ answer is (b).	Leade	r				

9. Similarity Important Facts and Formulae

Properties of Area of Triangles:

The ratio of the areas of two triangles is equal to the ratio of the products of their bases and the corresponding heights.

In the figure,

I

 $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{BC \times AD}{QR \times PS} \text{ i.e. } \frac{A_1}{A_2} = \frac{b_1 \times h_1}{b_2 \times h_2}$

where A, b, h denote area, base and height of triangle, respectively.

- 1] The ratio of the areas of two triangles having equal heights is equal to the ratio of their corresponding bases i.e. if $h_1 = h_2$ then $\frac{A_1}{A_2} = \frac{b_1}{b_2}$.
- 2] The ratio of the areas of two triangles having equal bases is equal to the ratio of their corresponding heights i.e. if $b_1 = b_2$ then $\frac{A_1}{A_2} = \frac{h_1}{h_2}$.
- 3] Areas of two triangles having equal bases and equal heights are equal. If $b_1 = b_2$, $h_1 = h_2$, then $A_1 = A_2$.

II. Basic Prop<mark>ortionality Theorem (B.P.T.):</mark>

If a line parallel to one side of a triangle intersects the other two sides in two distinct points, then the other two sides are divided in same ratio by it.

III. Property of intercepts made by three parallel lines:

The ratio of the intercepts made on a transversal by three parallel line is equal to the ratio of corresponding intercepts made on any other transversal by the same parallel lines.

If line I || line m || line n

and line x and line y are transversal, then $\frac{PQ}{OR} = \frac{EF}{FG}$.

This property known as property of intercepts made by three parallel lines.

IV. Property of an angle bisector of a triangle:

In a triangle, the angle bisector divides the side opposite to the angle in the ratio of remaining sides

In \triangle ABC, ray AD is the bisector of \angle A.

 $\therefore \frac{BD}{DC} = \frac{AB}{AC} \quad \text{i.e.} \quad \frac{x}{y} = \frac{c}{b}$

This property is known as the property of an angle bisector of a triangle.

V. Similarity of Triangles:

For a given one-to-one correspondence between the vertices of two triangles if

i) Their corresponding angles are congruent &

ii) Their Corresponding sides are proportional, then the correspondence is known as similarity & two triangles are said to be similar triangles.

1] SAS Test (side-angle-side test): For a given one-to-one correspondence between the vertices of two triangles, if two sides of one triangle are proportional to the corresponding sides of the other triangle and the angles included by them are congruent, then the two triangles are similar.

In the figure, under the correspondence,

 $PQR \leftrightarrow XYZ$

$$\frac{PQ}{XY} = \frac{QR}{YZ} = \frac{2}{3} \text{ and } \angle Q \cong \angle Y$$

Then by SAS test, $\Delta PQR \sim \Delta XYZ$.

2] SSS Test: For a given one-to-one correspondence between the vertices of two triangles, if three sides of one triangle are proportional to the three corresponding sides of the other triangle, then the two triangles are similar.

In the figure, under the correspondence,

 $ABC \leftrightarrow GEF$

 $\frac{AB}{GE} = \frac{BC}{EF} = \frac{AC}{GF} = \frac{5}{3}$

Then, by SSS test, $\triangle ABC \sim \triangle GEF$.

VI. Areas of Similar triangles:

The ratio of the areas of two similar triangles is equal to the ratio of the squares of the corresponding sides.

If $\triangle ABC \sim \triangle POR$, then $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$

Multiple Choice Questions

1.	In the figure, $\angle ABC = 2$	∠DCB = 90°	A	∧ ^D	
	AB = 10 and DC = 15.		10	15	
	Find the value of = $\frac{A(\Delta A)}{A(\Delta A)}$	ABC) DCB)	В		
	a) 3:5	b) 2:3	c) 5:2	d) 2:5	
2.	In the figure,			P	
	QR = 12, and SR = 4.				
	Find the value of = $\frac{A(\Delta I)}{A(\Delta I)}$	PQS) PQR)	¥//		R
	a) $\frac{1}{3}$	b) $\frac{8}{12}$	c) $\frac{2}{3}$	d) $\frac{2}{1}$	
3.	In the figure seg AE \perp s	side BC			
	Find A(AAEC) A(ADBF)				
	a) AE DF	b) $\frac{\mathrm{BF}}{\mathrm{FC}}$	c) $\frac{\text{EC x AE}}{\text{BF x DF}}$	d) $\frac{AD \times DB}{BF \times EC}$	
4.	The ratio of the areas	of two triangles with ec	ual heights is 3	: 4 Base of sma	aller triangle is 15 cm. Find the
	corresp <mark>onding</mark> base of	larger triangle.		AR	
	a) 20 cm	b) 15 cm	c) 4 cm	d) 18 cm	
5.	In the figure $\frac{A(\Delta ABC)}{A(\Delta DBC)}$ =	$\frac{3}{2}$ (DC = 7 cm)			A D
	Find AB				
	a) 10.2 cm	b) 10.5 cm	c) 11.5 cm	d) 9.5 cm	
6.	In a $\triangle ABC$, a line paral	lel to the side BC interse	ects the side AB a	and AC in the p	oints M & N respectively. Such
	that AM = 8, MB = 12 ,	AN - 6. Find NC.			
	a) 9	b) 10 Groo	or ^{c) 12} g the	d) 14	
7.	In the figure,	L	eader	A†	4
	line l line m line r	ı.		- <u>B</u>	2 12 5 - Ni
	Lines P and q are the t	ransversals.		- <u>-</u>	
	from the gives informa	ition, find ST.			
	$\frac{A_1}{A_2} = \frac{B_1}{B_2}$				
	a) 10	b) 15	c) 18	d) 20	

8.	In the figure,			A B
	seg AB seg CD seg	EF,		
	AC = 15, BO = 10, DF =	6. Find AE.		
	a) 20	b) 24	c) 30	d) 18
9.	Δ PQR ~ Δ XYZ; PQ = 6,	QR = 8, PR = 7, XY = 12 a	ind ∠Q = 75°. Fi	nd YZ.
	a) 18	b) 16	c) 17	d) 15
10.	$\Delta ABC \sim \Delta DEF$ and ΔAE	$3C \sim \Delta PQR$. If DE = 8, AB	= 7, PQ = 4, EF =	6, then find QR.
	a) 2	b) 5	c) 3	d) 10
11.	In th <mark>e figure, ΔΑΡΟ</mark> ~ Δ	ABC;		
	AP = <mark>6, AB</mark> = 15, AQ = 4	ı.	A A	<u>5</u> <u>P</u> 15 B
	Find <mark>AC</mark>			
	a) 8	b) 7	c) 12	d) 10
12.	In the figure, $\frac{PQ}{XZ} = \frac{2}{3}$			X
	QR = 4, <mark>ZY = 6</mark> , PR = 6,	XY = 9,		
	Are the Δ <mark>PQR a</mark> nd ΔXY	Z similar? If so state the	test.	
	a) SSS test	b) SAS test c) AA t	test d) AAA	A test
13.	In the trape <mark>zium</mark> A AB = 15, CD = 10. OA =	BCD, side AB side D 9, find OC.	C. Diagonals A	AC and BD intersect each other at O. If
	a) 7	b) 3	c) 6	d) 5
14.	The sides of the smalle triangle is 90, then wh	er triangle out of the two at are the lengths of the	o similar triangle sides of the larg	es are 4, 5, and 6. If the perimeter of the larger ser triangle respectively.
	a) 24, 30 & 36 respecti	vely Groo	b) 20, 22 and 2	28 respectively
	c) 18, 24 & 38 respecti	vely	d) 15, 17 & 20	respectively
15.	$\Delta ABC \sim \Delta MNP$ and BC	: NP 3: 4. F <mark>ind A(∆ABC</mark>):	(ΔMNP).	
	a) 6:15	b) 9:16	c) 9:5	d) 4:7
16.	Δ LMN ~ Δ RST and A (4	∆LMN) = 100 sq. cm A(∆I	<mark>RST) =</mark> 144 sq cm	n. LM = 5 cm, Find RS.
	a) 5 cm	b) 6 cm	c) 8 cm	d) 12 cm
17.	Areas of two similar tri corresponding side of	angles are 225 cm ² and 8 the larger triangle	31 cm ² . If one sid	e of the smaller triangle is 12 cm, then find the
	a) 20 cm	b) 15 cm	c) 14 cm	d) 25 cm
18.	Δ PQR ~ Δ PMN and 9	A(ΔPQR) = 16 A(ΔPMN).	Find $rac{QR}{MN}$	

	a) $\frac{4}{3}$	b) $\frac{3}{5}$	c) ⁵ / ₇	d) $\frac{3}{7}$
19.	The side of an equilate the first.	eral triangle is 8 cm. Finc	the side of equilateral	triangle whose area is twice the area of
	a) 2√2	b) 8√2	c) 5√2	d) $6\sqrt{2}$
20.	In the figure,			
	seg DE side AB.		E	
	DC = 2BD; A(∆CBE) = 2	0 cm ²	B D C	
	Find A (DABDE)			
	a) 2 <mark>5 cm²</mark>	b) 30 cm ²	c) 35 cm²	d) 20 cm ²
21.	$\Delta ABC \sim \Delta PQR. A(\Delta ABC)$	C) = 16 cm ² and A(Δ PQR) = 25 cm ² . Find $\frac{AB}{PQ}$	
	a) $\frac{4}{5}$	b) $\frac{2}{3}$	c) $\frac{5}{7}$	d) $\frac{7}{9}$
22.	ΔABC <mark>~ PQ</mark> R, AB : PQ :	= 8 : 6. If A (Bigger triang	gle) = 48 cm², then A (sm	naller triangle) = <mark>cm²</mark>
	a) 10.6 <mark>6</mark>	b) 27	c) 36	d) 64
23.	The distance between = 3.2 cm. The actual d	two places A and B is 1 (C, A) is km.	75 km. In a map it is sho	wn as 2.5 cm. I <mark>n the</mark> same map d (C, A)
	a) 224	b) 455	c) 916	d) 1575
24.	The correspo <mark>nding</mark> sid	es of two similar triangle	es are 4 cm and 6 cm. Th	en the ratio of their area is
	a) 2:3	b) 3:5	c) 4:9	d) 7:9
25.	$\Delta PQR, ST QR, then so 3 y = 0, 100 \text{ s}^{-1} $		DEN	YZ
			eader	
	a) 6	b) 9	c) 12	d) 5.4
26.	If ABC and DEF are sim	nilar triangles in which an	re similar triangles in wh	ich $\angle A = 47^{\circ}$ and $\angle E = 83^{\circ}$, then $\angle C$ is:
27.	If $\triangle ABC$ and $\triangle DEF$ are a) $\angle A = \angle F$ and $\angle B = \angle C$	so related that $\frac{AB}{FD} = \frac{AB}{DE} = \frac{2}{2}$	$\frac{CA}{EF}$ then which of the form b) $\angle C = \angle F$ and $\angle A =$	∠D ∠D
28.	The ratio of areas of t corresponding base of a) 8 cm b) 10 c	wo triangles having equiver the remaining triangle i cm c) 11 cm	al height is 2:3. If the b s: cm d) 12	ase of the smaller triangle is 8 cm, the cm
29.	The ratio of the corres a) 1:3 b) 3:1	ponding sides of two sin c) 1:9	nilar triangles is 1:3. The d) 9:1	e ratio of their corresponding heights is:

30. The areas of two similar triangles are 49 cm2 and 64 cm2 respectively. The ratio of their corresponding sides is:

a) 49:64 b) 7.8 c) 64:49 d) None Answer Keys $ \frac{1}{1.6} + \frac{1}{2.2} + \frac{1}{1.5} + \frac{1}$		IS:									
Answer Keys $ \frac{1. b}{1. d} \frac{2. b}{2. 2} \frac{3. c}{2. 3} \frac{4. a}{2. 5} \frac{5. b}{2. 6} \frac{6. a}{7. b} \frac{8. b}{9. b} \frac{9. b}{10. c}{10. c}$		a) 49:64	1	b) 7:8			c) 64:49	9		d) Non	ie
1. b2. b3. c4. a5. b6. a7. b8. b9. b10. c11. d12. b13. c14. a15. b16. b17. a18. a19. b20. a21. a22. b23. a24. c25. a27. a28. d29. a30. bHINTS AND SOLUTIONSIn the AAEC, the base is EC and the height is DF.: their areas are proportional to the products of the base and height Answer is (c).In the AAEC, the base is EC and the height is DF.: their areas are proportional to the products of the base and height Answer is (c).In the AAEC, the base is EC and the height is DF.: their areas are proportional to the products of the base and height Answer is (c).In the AAEC, the base is EC and the height is DF.: their areas are proportional to the products of the base and height Answer is (c).In the AAEC, the base is EC and the height is DF.: their areas are proportional to the products of the base and height Answer is (c).In the AAEC, the base is EC and the height is DF.: the in CIn the AAEC, the base is EC and the height is DF.: the in C: the in CIn the AAEC, the base is EC and the height is DF.: the in CIn the in Colspan="4">In the interval is DECIn the AAEC, the base is EC and the height is DF.: th		Answer	[.] Keys								
$\frac{11. d}{21. a} \frac{12. b}{23. a} \frac{13. c}{24. c} \frac{14. a}{25. a} \frac{15. b}{26. a} \frac{17. a}{27. a} \frac{18. a}{28. d} \frac{19. b}{29. a} \frac{20. a}{30. b}$ HINTS AND SOLUTIONS A In the AAEC, the base is EC and the height is AE. In ΔDBF, the base is BF and height is DF. \therefore their areas are proportional to the products of the base and height. \therefore Answer is (c). In \triangle MBF, the base is BF and height is DF. \therefore their areas are proportional to the products of the base and height. \therefore Answer is (c). In \triangle MBC, line MN side BC $\therefore \frac{AM}{MR} = \frac{AN}{NC}$ (BPT) $\therefore \frac{8}{12} = \frac{6}{NC} \qquad 8NC = 72 \qquad NC = 9 \qquad \therefore$ Answer is (a). I Line line m line n \therefore by the property of intercepts made by three parallel lines, $\therefore \frac{AB}{RC} = \frac{BS}{RT} \qquad \therefore \frac{8}{12} = \frac{12}{RT} \qquad \therefore$ AST = 120 $\qquad \therefore$ ST = 15 \therefore Answer is (b). In \triangle AOB and ACOD, \angle AOB = \angle COD (Vertically opposite angles) \angle DAB $\triangleq \angle$ OCD [alternate angles and AB DC & AC transversal] \angle \triangle AOB \sim \triangle COD [alternate angles and AB DC & AC transversal] \angle \triangle AOB \sim \triangle COD [alternate angles and AB DC & AC transversal] \angle \triangle AABC $= \frac{8}{CD} \qquad \therefore \frac{8}{9} = \frac{15}{15} \qquad \therefore$ 15DC = 90 \therefore OC = 6 \therefore Answer is (c). 14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{X}{4} = \frac{Y}{5} = \frac{Z}{6} \qquad \therefore \frac{X+Y+Z}{5} = \frac{Y+Y+Z}{5} \qquad$ [theorem on equal ratios] But perimeter of larger triangle 2 = 90. $X + y + z = 90 \qquad \therefore \frac{X+y+Z}{53} = \frac{5}{53} = 6 \qquad \therefore \frac{X}{6} = 6 \qquad \therefore x = 24, y = 30 & 8z = 36 \qquad \therefore$ Answer is (a). 17. Let \angle AABC arger triangle 2 /PQR smaller triangle 12 x n. By the theorem on areas of similar triangles. \angle AABC \rightarrow APQR (given) Let, the length of PQ of smaller triangle 12 x n. By the theorem on areas of similar triangles. \angle AABC is equilateral triangle having side 8 cm $\triangle APQR is another equilateral triangle side 8 cm \triangle APQR is another equilateral triangles are always similar). By the theorem on areas of similar triangles \angle A(AABCQ) = AB^2 - AQ^2 - AQ^2 - AQ^2 - AQ^2 - AQ^2 - $		1. b	2. b	3. c	4. a	5. b	6. a	7. b	8. b	9. b	10. c
21.a22.b23.a24.c25.a26.a27.a28.d29.a30.bHINTS AND SOLUTIONSIn the AAEC, the base is BE and height is DF.: their areas are proportional to the products of the base and height.: Answer is (c).in the AAEC, the base is BE and height is DF.: their areas are proportional to the products of the base and height.: Answer is (a).: in AABC, line MN side BC: $AM = AN$ (BPT): $\frac{a}{32} = \frac{6}{3C}$: $AN = COL: AN = COL: AN = COL: AN = AN = COL: AN = COL: AN = AN = COL: AN = A = COL: AA = A = A = A = A = A = A = A = A = A$		11. d	12. b	13. c	14. a	15. b	16. b	17. a	18. a	19. b	20. a
HINTS AND SOLUTIONS In the AAEC, the base is BC and the height is AE. In ADBF, the base is BF and height is DF. A their areas are proportional to the products of the base and height. Answer is (c). In AABC, line MN side BC $\therefore \frac{AM}{MB} = \frac{AN}{AC}$ (BPT) $\therefore \frac{3}{22} = \frac{6}{NC}$ \therefore 8NC = 72 \therefore NC = 9 \therefore Answer is (a). Line line m line n \therefore by the property of intercepts made by three parallel lines, $\therefore \frac{AM}{ME} = \frac{8N}{ST}$ $\therefore \frac{9}{12} = \frac{12}{ST}$ \therefore 8ST = 120 \therefore ST = 15 \therefore Answer is (b). In AAOB and ACOD, $\angle AOB = \angle COD$ (Vertically opposite angles) $\angle DAB \cong \angle OCD$ [alternate angles and AB DC & AC transversal] \therefore AAOB \sim ACOD [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternation] and answer is (a). I.t et the lengths corresponding of side 4, 5 and 6 of smaller triangle bax, y, z respectively. $\frac{X}{4} = \frac{Y}{5} = \frac{Z}{6}$ $\therefore \frac{X}{4} + 5 + 6 = \frac{X}{15} = \frac{5}{16}$ $\therefore \frac{Y}{6} = 6 = \frac{Z}{6} = 6 = \frac{X}{6} = \frac{Z}{6} = \frac{Z}{6} = \frac{Z}{6} = \frac{Z}{7} = $		21. a	22. b	23. a	24. c	25. a	26. a	27. a	<mark>28.</mark> d	29. a	30. b
8. In the ΔAEC , the base is EC and the height is AE. In ΔDBF , the base is BF and height is DF. \therefore their areas are proportional to the products of the base and height. \Rightarrow Answer is (c). In ΔABC , line MN side BC $\Rightarrow \frac{\Delta M}{MB} = \frac{AN}{NC}$ (BPT) $\Rightarrow \frac{a}{12} = \frac{6}{NC}$ $\Rightarrow 8NC = 72$ $\Rightarrow NC = 9$ $\Rightarrow Answer is (a).$ I line I line m line m \Rightarrow by the property of intercepts made by three parallel lines, $\Rightarrow \frac{AB}{RC} = \frac{RS}{ST}$ $\Rightarrow \frac{a}{12} = \frac{12}{ST}$ $\Rightarrow 8ST = 120$ $\Rightarrow ST = 15$ \Rightarrow Answer is (b). In $\Delta ABB and ACOD, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		HINTS A	AND SOI	LUTIONS	5						
In ADBF, the base is BF and height is DF. .: their areas are proportional to the products of the base and height: Answer is (c). S. In AABC, line MN [] side BC $\therefore \frac{A_{MB}}{ME} = \frac{A_N}{RC}$ (BPT) $\therefore \frac{B}{32} = \frac{6}{NC}$ \therefore 8NC = 72 \therefore NC = 9 \therefore Answer is (a). I. Line I] [] line m] [] line n \therefore by the property of intercepts made by three parallel lines, $\therefore \frac{AB}{MC} = \frac{RS}{ST}$ $\therefore \frac{B}{32} = \frac{42}{ST}$ \therefore 8ST = 120 \therefore ST = 15 \therefore Answer is (b). I. In AAOB and ACOD, $\angle AOB = \angle COD$ (Vertically opposite angles) $\angle DAB \cong \angle OCD$ [] alternate angles and AB [] DC & AC transversal] $\therefore \triangle AOB \leftarrow \DeltaCOD$	3.	In the Δ	AEC, th	e base is	EC and	the heig	ght is AE				
∴ their areas are proportional to the products of the base and height. ∴ Answer is (c). 5. In AABC, line MN side BC $\therefore \frac{AM}{MB} = \frac{AN}{AK}$ (BPT) $\therefore \frac{a}{12} = \frac{6}{NC}$ \therefore 8NC = 72 \therefore NC = 9 \therefore Answer is (a). 7. Line I line m line n \therefore by the property of intercepts made by three parallel lines, $\therefore \frac{AB}{BC} = \frac{RS}{ST}$ $\therefore \frac{a}{12} = \frac{12}{ST}$ \therefore 8ST = 120 \therefore ST = 15 \therefore Answer is (b). 12. In AAOB and ACOD, ∠AOB = ∠COD (Vertically opposite angles) $\angle DAB \cong \angle OCD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and AB DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and B DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles and B DC & AC transversal] \therefore AAOB $\sim \Delta COD$ [alternate angles angles] But perimeter of larger triangle = 90. $x + y + z = 90$ $\therefore \frac{x + y + z}{15} = \frac{90}{12} = 0$. $x + y + z = 90$ $\therefore \frac{x + y + z}{15} = \frac{90}{12} = 0$. $x + y + z = 90$ $\therefore \frac{x + y + z}{15} = \frac{90}{12} = 0$. $x + y + z = 90$ $\therefore \frac{x + y + z}{15} = \frac{90}{12} \therefore 9 \times AB = 12 \times 15 $ $\therefore AB = 20$ \therefore Answer is (a). 13. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle POR is another equilateral triangles. \triangle (AABCQ) = AA^{A} (AZPQ) = A(AABC)\triangle AABC \sim APQR (equilateral triangles are always similar)By the theorem on areas of similar triangles.\triangle (AABC) = AB^{A} (AZPQ) \therefore AABC = \frac{AB^{A} (AZPQ) = \frac{ACABC}{PQ^{A}$		In ∆DBF	, the ba	ise is BF	and heig	ght is DF					
5. In $\triangle ABC$, line MN side BC $\therefore \frac{AM}{MB} = \frac{AN}{AC}$ (BPT) $\therefore \frac{8}{12} = \frac{6}{MC}$ \therefore 8NC = 72 \therefore NC = 9 \therefore Answer is (a). 7. Line line m line n \therefore by the property of intercepts made by three parallel lines, $\therefore \frac{AM}{ABC} = \frac{RS}{ST}$ $\therefore \frac{8}{12} = \frac{12}{ST}$ \therefore 8ST = 120 \therefore ST = 15 \therefore Answer is (b). 10. $\triangle AOB$ and $\triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ [alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \triangle AOB \approx \triangle COD$ (alternate angles and AB DC & AC transversal] $\therefore \Delta AOB \approx \Delta COD$ (alternate angles and AB DC & AC transversal] $\therefore \Delta AOB \approx \Delta COD$ (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		∴ their a	areas ar	e propo	rtional to	o the pr	oducts o	f the ba	se and h	neight.	∴ Answer is (c).
$\frac{1}{12} = \frac{6}{NC} \qquad \therefore 8NC = 72 \qquad \therefore NC = 9 \qquad \therefore Answer is (a).$ $\frac{1}{12} = \frac{6}{NC} \qquad \therefore 8NC = 72 \qquad \therefore NC = 9 \qquad \therefore Answer is (a).$ $\frac{1}{11} [1] [line m] [line n]$ $\therefore by the property of intercepts made by three parallel lines, \frac{AB}{C} = \frac{BS}{C} \qquad \therefore \frac{B}{12} = \frac{12}{ST} \qquad \therefore 8ST = 120 \qquad \therefore ST = 15 \therefore Answer is (b). \frac{12}{12} = In \Delta AOB and \Delta COD, \ \angle AOB = \ \angle COD \qquad (Vertically opposite angles) \angle DAB \equiv \ \angle OCD \qquad [alternate angles and AB] D C & AC transversal] \therefore AAOB - ACOD \qquad \dots, (A - A test) \frac{AOB}{C} = \frac{AB}{CD} \qquad \therefore \frac{9}{OC} = \frac{15}{10} \qquad \therefore 15OC = 90 \qquad \therefore OC = 6 \qquad \therefore Answer is (c). \frac{14}{C} = Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. \frac{x}{4} = \frac{y}{5} = \frac{z}{6} \qquad \therefore \frac{x + y + z}{15} = \frac{y + y + z}{15} \qquad [theorem on equal ratios] But perimeter of larger triangle = 90.x + y + z = 90 \qquad \therefore \frac{x + y + z}{15} = \frac{90}{15} = 6 \qquad \therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6 \therefore x = 24, y = 30 \& x = 36 \qquad \therefore Answer is (a). 17. Let \ \angle ABC [arger triangle; \ \angle PQR smaller triangle 12 cm. By the theorem on areas of similar triangles.\frac{A(AABC)}{A(AQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \therefore \frac{15}{9} = \frac{50}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20 \therefore Answer is (a). 19. Let \ \angle AABC is equilateral triangle having side 8 cm \Delta PQR is another equilateral triangles. \frac{A(AABC)}{A(APQR)} = 2A(ABC) AABC \sim \Delta PQR (equilateral triangles are always similar) By the theorem on areas of similar triangles.\frac{A(AABC)}{A(APQR)} = 2A(ABC) AABC \sim \Delta PQR (equilateral triangles are always similar) By the theorem on areas of similar triangles.\frac{A(AABC)}{A(APQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{A(ABC)}{2A(AABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2} PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} cm Answer is (b). 12. The ratio of the areas of two similar triangles equals the raingle. \frac{A(AABC)}{A(APQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{A(ABC)}{A(ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2} PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} cm Answer is (b). 12. The ratio of the $	6.	In ∆ <mark>ABC</mark>	C, line M	IN sid	e BC	$\therefore \frac{AM}{M} =$	$\frac{AN}{NC}$ (BP	Т)			
$\frac{1}{12} = \frac{NC}{NC}$. (AC = 12 (AC = 3) (A = 13 well is (a)). (1) Line line m line n ∴ by the property of intercepts made by three parallel lines, ∴ $\frac{AB}{BC} = \frac{8S}{ST}$ $\frac{8}{12} = \frac{12}{ST}$ (A = 120 (ST = 15) ∴ Answer is (b). (2) In ΔAOB and ΔCOD, ∠AOB = ∠COD (Vertically opposite angles) ∠DAB ≅ ∠OCD [alternate angles and AB DC & AC transversal] ∴ ΔAOB ~ ΔCOD(A - A test) ∴ $\frac{OA}{C} = \frac{AB}{CD}$ $\frac{9}{OC} = \frac{15}{10}$ (ST = 15) ∴ Let the lengts corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{X}{4} = \frac{Y}{5} = \frac{Z}{6}$ $\frac{X + Y + Z}{4 + 5 + 6} = \frac{X + Y + Z}{15}$ [theorem on equal ratios] But perimeter of larger triangle = 90. $x + y + z = 90$ $\frac{X + Y + X}{15} = \frac{91}{15} = 6$ $\frac{X}{4} = 6, \frac{Y}{5} = 6, \frac{Z}{6} = 6$ $\therefore x = 24, y = 30 & z = 36$ Answer is (a). (2) Let ∠ABC larger triangle; ∠PQR smaller triangle $\Delta ABC ~ \Delta PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(AABC)}{A(APQR)} = \frac{AB^2}{A^2}$ $\frac{2Z5}{191} = \frac{AB^2}{(12)^2}$ $\frac{15}{9} = \frac{AB}{12}$ $9 × AB = 12 \times 15$ $AB = 20$ ∴ Answer is (a). (3) Let $AABC$ is equilateral triangle having side 8 cm ΔPQR is another equilateral triangles, $A(APQR)$ (AABC) $AABC ~ \Delta PQR$ (equilateral triangles, $A(APQR) = 2A(ABC)$ $AABC ~ \Delta PQR$ (equilateral triangles, $A(APQR) = 2A(ABC)$ $AABC ~ APQR (equilateral triangles, A(APQR) = \frac{AB^2}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{AB}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{AB}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{AB}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{B^2}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{B^2}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{B^2}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{B^2}{PQ^2} \frac{A(ABC)}{PQ^2} = \frac{A(ABC)}{PQ^2} \frac{A(ABC)}{PQ^2} = A(A$. 8 _ 6	5	• 9NC -	- 72	· NC -	NC ·	· Ancu	vor is (a)		
C. Line [] line m] [line n ∴ by the property of intercepts made by three parallel lines, ∴ $\frac{AB}{BC} = \frac{BS}{ST}$ ∴ $\frac{B}{12} = \frac{12}{ST}$ ∴ 8ST = 120 ∴ ST = 15 ∴ Answer is (b). In AAOB and ACOD, ∠AOB = ∠COD (Vertically opposite angles) ∠DAB ≅ ∠OCD [alternate angles and AB] DC & AC transversal] ∴ ∆AOB ~ ∆COD ∴ ∆AOB ~ ∆COD … (A - A test) ∴ $\frac{OA}{OC} = \frac{AB}{CD}$ ∴ $\frac{A^2 + y + z}{2}$ [and a + 5 + 6] ∴ $\frac{A^2 + y + z}{15}$ [theorem on equal ratios] But perimeter of larger triangle = 90. x + y + z = 90 ∴ $\frac{x + y + z}{15} = \frac{91}{25} = 6$ ∴ $\frac{x + y + z}{15} = \frac{91}{25} = \frac{12}{5}$ ∴ $\frac{x + y + z}{15} = \frac{12}{2}$ ∴ $\frac{x + y + z}{15} = \frac{12}{15}$ ∴ $x + y +$	_	12 N		·· onc -	- 72	NC -		•• AIISW	ver is (a)		
∴ by the property of intercepts made by three parallel lines, ∴ $\frac{AB}{BC} = \frac{BS}{ST}$ ∴ $\frac{a}{12} = \frac{12}{ST}$ ∴ 8ST = 120 ∴ ST = 15 ∴ Answer is (b). 10 AAOB and ACOD, ∠AOB = ∠COD (Vertically opposite angles) ∠DAB $\frac{a}{2}$ ∠OCD [alternate angles and AB DC & AC transversal] ∴ AAOB ~ ACOD (A ~ A test) ∴ $\frac{OA}{OC} = \frac{AB}{CD}$ ∴ $\frac{9}{OC} = \frac{15}{10}$ ∴ 15OC = 90 ∴ OC = 6 ∴ Answer is (c). 14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{X}{4} = \frac{Y}{5} = \frac{Z}{6}$ ∴ $\frac{x + y + z}{15} = \frac{5}{15}$ [theorem on equal ratios] But perimeter of larger triangle = 90. $x + y + z = 90$ ∴ $\frac{x + y + z}{15} = \frac{90}{15} = 6$ ∴ $\frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ ∴ $x = 24, y = 30$ & $z = 35$ Answer is (a). 17. Let ∠ABC larger triangle; ∠PQR smaller triangle $\Delta ABC ~ \Delta PQR$ (given) Let, the length of PQ of smaller triangle, $\frac{A(ABC)}{A(APQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{15}{91} = \frac{AB^2}{91} \therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ ∴ Answer is (a). 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangles, $\frac{A(ABC)}{A(APQR)} = 2A(ABC)$ $\Delta ABC ~ \Delta PQR$ (equilateral triangles, $\frac{A(ABBC)}{A(APQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{15}{9} = \frac{B^2}{PQ^2}$ $\therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ $\therefore Answer is (a). 19. Let theorem on areas of similar triangles, \frac{A(ABBC)}{A(APQR)} = 2A(ABC)\Delta ABC ~ \Delta PQR (equilateral triangles are always similar)By the theorem on areas of similar triangles,\frac{A(ABBC)}{A(APQR)} = \frac{AB^2}{PQ^2} \therefore \frac{1}{2} = \frac{64}{PQ^2}PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \therefore \frac{1}{2} = \frac{64}{PQ^2}PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \therefore \frac{1}{2} = \frac{64}{PQ^2}PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \therefore \frac{64}{2} = \frac{48}{2}$	/.	Line	line m	line n							
$\frac{1}{100} = \frac{10}{100} \qquad $		\therefore by the	e proper	rty of int 8 1	ercepts	made b	y three p	barallel I	ines,		
∴ Answer is (b). 12. In ΔAOB and ΔCOD, ∠AOB = ∠COD (Vertically opposite angles) ∠DAB ≅ ∠OD [alternate angles and AB DC & AC transversal] ∴ ΔAOB ~ ΔCOD, (A - A test) ∴ $\frac{\Delta A}{\partial c} = \frac{AB}{CD}$, $\frac{9}{\partial c} = \frac{15}{10}$ 1SOC = 90 OC = 6 Answer is (c). 14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$, $\frac{x+y+z}{6} = \frac{x+y+z}{15}$ [theorem on equal ratios] But perimeter of larger triangle = 90. $x + y + z = 90$, $\frac{x+y+z}{15} = \frac{90}{15} = 6$, $\frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30$ & $z = 36$, Answer is (a). 17. Let ∠ABC larger triangle; ∠PQR smaller triangle $\Delta ABC ~ \Delta PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(ABC)}{A(APQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{225}{81} = \frac{AB^2}{(12)^2}$ $\therefore \frac{15}{9} = \frac{AB}{12}$ $\therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ \therefore Answer is (a). 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangles, $\frac{A(AABC)}{A(APQR)} = 2A(\Delta ABC)$ $\Delta ABC ~ \Delta PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(AABC)}{A(APQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{15}{PQ^2} = \frac{A^2}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm}$ \therefore Answer is (b). 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $AABC$ be the bigger triangle and ΔPQR be the smaller triangle. Let $AABC$ be the bigger triangle and ΔPQR be the smaller triangle.		$\therefore \frac{BD}{BC} = \frac{1}{S}$	ST ST	$\therefore \frac{0}{12} = \frac{1}{S}$	T	∴ 8ST =	: 120	∴ ST =	15		
12. In ΔAOB and ΔCOD, ∠AOB = ∠COD (Vertically opposite angles) ∠DAB ≅ ∠OCD [alternate angles and AB DC & AC transversal] ∴ ΔAOB ~ ΔCOD (A - A test) ∴ $\frac{OA}{OC} = \frac{AB}{CD}$ ∴ $\frac{9}{OC} = \frac{15}{10}$ ∴ 150C = 90 ∴ OC = 6 ∴ Answer is (c). 14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{X}{4} = \frac{Y}{5} = \frac{Z}{6}$ ∴ $\frac{X + Y + Z}{4 + 4 + 5 + 6} = \frac{X + Y + Z}{15}$ [theorem on equal ratios] But perimeter of larger triangle = 90. $x + y + z = 90$ ∴ $\frac{X + Y + Z}{4 + 4 + 5 + 6} = \frac{4X + Y + Z}{15} = \frac{90}{15} = 6$ ∴ $\frac{X}{4} = 6, \frac{Y}{5} = 6, \frac{Z}{6} = 6$ ∴ $x = 24, y = 30$ & $z = 36$ ∴ Answer is (a). 17. Let ∠ABC larger triangle; ∠PQR smaller triangle ΔABC ~ ΔPQR (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(ABC)}{(AQPQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{225}{811} = \frac{AB^2}{(12)^2}$ $\therefore \frac{15}{9} = \frac{AB}{12}$ $\therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ ∴ Answer is (a). 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangles, $\frac{A(ABC)}{(AQPQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{A(ABC)}{2A(ABC)} = \frac{B^2}{PQ^2}$ $\therefore \frac{1}{2} = \frac{64}{PQ^2}$ PQ ² = 64 × 2, PQ = $\sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 20. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $AABC$ be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{2} = \frac{B^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		∴ Ans <mark>w</mark>	<mark>er is (b)</mark> .								
$\Delta DAB \cong 2 \text{ OCD} \qquad \text{[alternate angles and AB DC & AC transversal]} \therefore \Delta AOB \sim \Delta COD \qquad \dots, (A - A \text{ test}) \\ \therefore \frac{OA}{OC} = \frac{AB}{CD} \qquad \therefore \frac{9}{OC} = \frac{15}{10} \qquad \therefore 150C = 90 \qquad \therefore OC = 6 \qquad \therefore \text{ Answer is (c).} \\ \text{I.4. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively.} \\ \frac{x}{4} = \frac{x}{5} = \frac{z}{6} \qquad \therefore \frac{x + y + z}{4 + 5 + 6} = \frac{x + y + z}{15} \qquad [\text{theorem on equal ratios]} \\ \text{But perimeter of larger triangle = 90.} \\ x + \gamma + z = 90 \qquad \therefore \frac{x + y + z}{15} = \frac{90}{15} = 6 \qquad \therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6 \\ \therefore x = 24, y = 30 & & z = 36 \qquad \therefore \text{ Answer is (a).} \\ I.7. Let \Delta ABC larger triangle; 2PQR smaller triangle \Delta ABC \sim \Delta PQR (given)Let, the length of PQ of smaller triangles, \frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{15}{9} = \frac{AB}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20 \\ \therefore \text{ Answer is (a).} \\ \text{I.9. Let } \Delta ABC is equilateral triangle having side 8 cm \Delta PQR is another equilateral triangles, A(\Delta PQR) = 2A(\Delta ABC)\Delta ABC \sim \Delta PQR (equilateral triangles, A(\Delta PQR) = 2A(\Delta ABC)\Delta ABC \sim \Delta PQR = 2A(\Delta ABC) = \frac{B^2}{2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2} \qquad \therefore Answer is (b).12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let \Delta ABC be the bigger triangle and \Delta PQR be the smaller triangle.Let A(\Delta POR) = x, then \frac{A(\Delta ABC)}{2A(\Delta PQR)} = \frac{B^2}{2} = \frac{64}{2} \qquad \therefore Answer is (b).$	12.	In ∆A <mark>O</mark> I	B and $\Delta 0$	COD, ∠A	OB = ∠C	OD	(Vertica	ally oppo	osite an	gles)	
		∠DAB <mark>≅</mark>	≚ ∠OCD		[alterna	ate angle	es and A	B DC	& AC tra	ansversa	al]
$\frac{\partial Q_{c}}{\partial C} = \frac{AB}{CD} \qquad \therefore \frac{9}{\partial C} = \frac{15}{10} \qquad \therefore 15OC = 90 \qquad \therefore OC = 6 \qquad \therefore \text{ Answer is (c).}$ 14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{x}{4} = \frac{y}{5} = \frac{z}{6} \qquad \therefore \frac{x+y+z}{4+5+6} = \frac{x+y+z}{15} \qquad [\text{theorem on equal ratios}]$ But perimeter of larger triangle = 90. $x + \gamma + z = 90 \qquad \therefore \frac{x+y+z}{15} = \frac{90}{15} = 6 \qquad \therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30 \& z = 36 \qquad \therefore \text{ Answer is (a).}$ 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR \text{ (given)}$ Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\triangle APQR)}{A(\triangle APQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \therefore \frac{15}{9} = \frac{AB}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20$ $\therefore \text{ Answer is (a).}$ 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangles, $\frac{A(\triangle ABC)}{A(\triangle APQR)} = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR (equilateral triangles are always similar)$ By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{AB^2}{2} \qquad \therefore \frac{A(\triangle ABC)}{2(\triangle (ABC))} \qquad \therefore \frac{15}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $\triangle (\Delta PQR) = x$, then $\frac{A(\triangle ABC)}{2} = \frac{8^2}{PQ^2} \qquad \therefore \frac{64}{2} = \frac{48}{PQ^2}$		∴ ∆AOB	³ ~ ∆CO	D		(A -	A test)				
14. Let the lengths corresponding of side 4, 5 and 6 of smaller triangle be x, y, z respectively. $\frac{x}{4} = \frac{y}{5} = \frac{z}{6} \qquad \therefore \frac{x+y+z}{4+5+6} = \frac{x+y+z}{15} \qquad [theorem on equal ratios]$ But perimeter of larger triangle = 90. $x+y+z = 90 \qquad \therefore \frac{x+y+z}{15} = \frac{90}{15} = 6 \qquad \therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30 \& z = 36 \qquad \therefore \text{ Answer is (a)}.$ 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR (given)$ Let, the length of PQ of smaller triangles, $\frac{A(\Delta ABC}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \therefore \frac{15}{9} = \frac{AB}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20$ $\therefore \text{ Answer is (a)}.$ 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR (equilateral triangles are always similar)$ By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = 2A(\triangle ABC)$ $\triangle ABC \sim \Delta PQR (equilateral triangles are always similar)$ By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\Delta PQR)} = 2A(\triangle ABC)$ $\triangle ABC \sim \Delta PQR (equilateral triangles are always similar)$ By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\Delta PQR)} = 2A(\triangle ABC)$ $\triangle ABC \sim \Delta PQR (equilateral triangles are always similar)$ By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b)}.$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{B^2}{2} = \frac{64}{2} \qquad \therefore \frac{64}{2} = \frac{48}{2}$		$\therefore \frac{OA}{OC} = \frac{A}{C}$		$\therefore \frac{9}{00} = \frac{1}{10}$	15	·· 1500	2 = 90	∴ OC =	6	∴ Ansv	ver is (c).
$\frac{x}{4} = \frac{y}{5} = \frac{z}{6} \qquad \therefore \frac{x+y+z}{4+5+6} = \frac{x+y+z}{15} \qquad [\text{theorem on equal ratios}]$ But perimeter of larger triangle = 90. $x+y+z=90 \qquad \therefore \frac{x+y+z}{15} = \frac{90}{15} = 6 \qquad \therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30 \& z = 36 \qquad \therefore \text{ Answer is (a)}.$ 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR \text{ (given)}$ Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \therefore \frac{15}{9} = \frac{AB}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20$ $\therefore \text{ Answer is (a)}.$ 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\triangle PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR \text{ (equilateral triangles, area shows similar)}$ By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b)}.$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{PQ^2} = \frac{64}{2} \qquad \therefore \frac{64}{2} = \frac{48}{2}$	14.	Let the	lengths	correspo	onding o	f side 4,	, 5 and 6	of smal	ler trian	gle be x	, y, z respecti <mark>vely.</mark>
4 5 6 4+5+6 15 Excertise equations of each of equations of But perimeter of larger triangle = 90. x + y + z = 90 $\therefore \frac{x + y + z}{15} = \frac{90}{15} = 6$ $\therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30 \& z = 36$ \therefore Answer is (a). 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \div \frac{225}{81} = \frac{AB^2}{(12)^2} \div \frac{15}{9} = \frac{AB}{12} \div 9 \times AB = 12 \times 15 \therefore AB = 20$ \therefore Answer is (a). 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\Delta PQR) = 2A(\Delta ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(AABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \div \frac{A(AABC)}{2A(AABC)} = \frac{B^2}{PQ^2} \div \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{B^2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		$\frac{X}{X} = \frac{Y}{X} = \frac{Z}{X}$	Z	<u>x + y +</u>	$\frac{z}{z} = \frac{x+y}{z+y}$	/ + z	[theore	em on ec	nual rati	osl	
but permeter of larger triangle = 50. $x + y + z = 90$ $\therefore \frac{x + y + z}{15} = \frac{90}{15} = 6$ $\therefore \frac{x}{4} = 6, \frac{y}{5} = 6, \frac{z}{6} = 6$ $\therefore x = 24, y = 30 \& z = 36$ \therefore Answer is (a). 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{225}{81} = \frac{AB^2}{(12)^2}$ $\therefore \frac{15}{9} = \frac{AB}{12}$ $\therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ \therefore Answer is (a). 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\triangle PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{8^2}{PQ^2}$ $\therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm}$ \therefore Answer is (b). 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		4 5 6 But per	5 imeter c	4 + 5 + of larger	⊦6 1 triangle	.5 – 90	[1		
$x + y + 2 = 90$ $\therefore \frac{1}{15} = \frac{1}{15} = 6$ $\therefore \frac{1}{4} = 6, \frac{1}{5} = 6$ $\therefore x = 24, y = 30 \& z = 36$ \therefore Answer is (a). 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{225}{81} = \frac{AB^2}{(12)^2}$ $\therefore \frac{15}{9} = \frac{AB}{12}$ $\therefore 9 \times AB = 12 \times 15$ $\therefore AB = 20$ \therefore Answer is (a). 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangles, $A(\Delta PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2}$ $\therefore \frac{A(\triangle ABC)}{PQ^2} = \frac{B^2}{PQ^2}$ $\therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		but per		x + y +	- z 90	- 50.	. ^x - c	y c z	- (
$\therefore x = 24, y = 30 \& z = 36 \qquad \therefore \text{ Answer is (a).}$ 17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR$ (given) Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \therefore \frac{15}{9} = \frac{AB}{12} \qquad \therefore 9 \times AB = 12 \times 15 \qquad \therefore AB = 20$ $\therefore \text{ Answer is (a).}$ 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\triangle PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \qquad \therefore \frac{A(\triangle ABC)}{PQ^2} = \frac{B^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{B^2}{2} = \frac{64}{2} \qquad \therefore \frac{64}{24} = \frac{48}{2}$		x + y + z	2 = 90	. 15	$=\frac{15}{15}$	= 0	$\frac{1}{4} = 6,$	5 6, <u>-</u> 6	= 0		
17. Let $\angle ABC$ larger triangle; $\angle PQR$ smaller triangle $\triangle ABC \sim \triangle PQR$ (given) Let, the length of PQ of smaller triangles, $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \div \frac{225}{81} = \frac{AB^2}{(12)^2} \div \frac{15}{9} = \frac{AB}{12} \div 9 \times AB = 12 \times 15 \Rightarrow AB = 20$ \therefore Answer is (a). 19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\triangle PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \div \frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{PQ^2} \div \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{B^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		∴ x = 24	l, y = 30	& z = 36		∴ Answ	ver is (a).				
Let, the length of PQ of smaller triangle 12 cm. By the theorem on areas of similar triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{225}{81} = \frac{AB^2}{(12)^2} \therefore \frac{15}{9} = \frac{AB}{12} \therefore 9 \times AB = 12 \times 15 \therefore AB = 20$ $\therefore Answer is (a).$ 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangle, $A(\Delta PQR) = 2A(\Delta ABC)$ $\Delta ABC \sim \Delta PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{B^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b)}.$ 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{24} = \frac{48}{2}$	17.	Let ZAE	3C large	r triangle	e; ZPQR	smaller	triangle				
By the theorem on areas of similar triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \because \frac{225}{81} = \frac{AB^2}{(12)^2} \qquad \because \frac{15}{9} = \frac{AB}{12} \qquad \because 9 \times AB = 12 \times 15 \qquad \because AB = 20$ $\therefore \text{ Answer is (a).}$ 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangle, $A(\Delta PQR) = 2A(\Delta ABC)$ $\Delta ABC \sim \Delta PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \because \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{B^2}{PQ^2} \qquad \because \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{B^2}{2} \qquad \because \frac{64}{2} = \frac{48}{2}$		$\Delta ABC \sim$		(given)			12				
By the theorem on areas of similar triangles, $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \because \frac{225}{81} = \frac{AB^2}{(12)^2} \because \frac{15}{9} = \frac{AB}{12} \because 9 \times AB = 12 \times 15 \because AB = 20$ $\therefore \text{ Answer is (a).}$ 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangle, $A(\Delta PQR) = 2A(\Delta ABC)$ $\Delta ABC \sim \Delta PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \because \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \because \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \therefore \text{ Answer is (b).}$ 12. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2} \therefore \frac{64}{24} = \frac{48}{2}$		Let, the	length	of PQ of	smaller	triangle	12 cm.				
$\frac{A(\Delta APQR)}{A(\Delta PQR)} = \frac{AB}{PQ^2} \therefore \frac{223}{81} = \frac{AB}{(12)^2} \therefore \frac{13}{9} = \frac{AB}{12} \therefore 9 \times AB = 12 \times 15 \therefore AB = 20$ $\therefore \text{ Answer is (a).}$ 19. Let ΔABC is equilateral triangle having side 8 cm ΔPQR is another equilateral triangle, $A(\Delta PQR) = 2A(\Delta ABC)$ $\Delta ABC \sim \Delta PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2} \qquad \qquad \therefore \frac{64}{2} = \frac{48}{2}$		By the t	neorem	on area			igies,				
$\therefore \text{ Answer is (a).}$ 19. Let $\triangle \text{ABC}$ is equilateral triangle having side 8 cm $\triangle \text{PQR is another equilateral triangle,}$ $A(\triangle \text{PQR}) = 2A(\triangle \text{ABC})$ $\triangle \text{ABC} \sim \triangle \text{PQR (equilateral triangles are always similar)}$ By the theorem on areas of similar triangles $\frac{A(\triangle \text{ABC})}{A(\triangle \text{PQR})} = \frac{AB^2}{\text{PQ}^2} \therefore \frac{A(\triangle \text{ABC})}{2A(\triangle \text{ABC})} = \frac{8^2}{\text{PQ}^2} \qquad \therefore \frac{1}{2} = \frac{64}{\text{PQ}^2}$ $\text{PQ}^2 = 64 \times 2, \text{PQ} = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle \text{ABC}$ be the bigger triangle and $\triangle \text{PQR}$ be the smaller triangle. Let $A(\triangle \text{PQR}) = x$, then $\frac{A(\triangle \text{ABC})}{2} = \frac{8^2}{2} = \frac{64}{2} \qquad \therefore \frac{64}{2} = \frac{48}{2}$		$\frac{A(\Delta ADC)}{A(\Delta PQR)}$	$=\frac{AB}{PQ^2}$	$\therefore \frac{223}{81} =$	$(12)^2$	$\frac{15}{9} = \frac{15}{9}$	$\frac{AB}{12}$: 9	× AB = 1	12 x 15	∴ AB =	20
19. Let $\triangle ABC$ is equilateral triangle having side 8 cm $\triangle PQR$ is another equilateral triangle, $A(\triangle PQR) = 2A(\triangle ABC)$ $\triangle ABC \sim \triangle PQR$ (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\triangle ABC)}{2A(\triangle ABC)} = \frac{8^2}{PQ^2} \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \therefore \text{ Answer is (b)}.$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{A(\triangle ABC)} = \frac{8^2}{2} = \frac{64}{2} \therefore \frac{64}{2} = \frac{48}{2}$		∴ Answ	er is (a).								
$\Delta PQR \text{ is another equilateral triangle,}$ $A(\Delta PQR) = 2A(\Delta ABC)$ $\Delta ABC \sim \Delta PQR \text{ (equilateral triangles are always similar)}$ By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ P2. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta BC)} = \frac{8^2}{2} = \frac{64}{2} \qquad \therefore \frac{64}{2} = \frac{48}{2}$	19.	Let ΔAB	BC is equ	ilateral	triangle	having s	ide 8 cm	1			
A(Δ PQR) = 2A(Δ ABC) Δ ABC ~ Δ PQR (equilateral triangles are always similar) By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \therefore \frac{1}{2} = \frac{64}{PQ^2}$ PQ ² = 64 × 2, PQ = $\sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let Δ ABC be the bigger triangle and Δ PQR be the smaller triangle. Let A(Δ PQR) = x, then $\frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		Δ PQR is	anothe	er equilat	teral tria	ng <mark>le,</mark>					
$\Delta ABC \sim \Delta PQR \text{ (equilateral triangles are always similar)}$ By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ PQ ² = 64 × 2, PQ = $\sqrt{64 \times 2} = 8\sqrt{2}$ cm \therefore Answer is (b). P2. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		Α(ΔΡQF	R) = 2A(/	ABC)							
By the theorem on areas of similar triangles $\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2} \qquad \therefore \frac{64}{2} = \frac{48}{2}$		$\Delta ABC \sim$	$\sim \Delta PQR$ (equilate	ral trian	gles are	always	similar)			
$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \therefore \frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{PQ^2} \qquad \therefore \frac{1}{2} = \frac{64}{PQ^2}$ $PQ^2 = 64 \times 2, PQ = \sqrt{64 \times 2} = 8\sqrt{2} \text{ cm} \qquad \therefore \text{ Answer is (b).}$ 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let ΔABC be the bigger triangle and ΔPQR be the smaller triangle. Let $A(\Delta PQR) = x$, then $\frac{A(\Delta ABC)}{2A(\Delta ABC)} = \frac{8^2}{2} = \frac{64}{2}$ $\qquad \therefore \frac{64}{2} = \frac{48}{2}$		By the t	heorem	on area	is of sim	ilar triar	ngles				
PQ ² = 64 × 2, PQ = $\sqrt{64 \times 2}$ = $8\sqrt{2}$ cm \therefore Answer is (b). 22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{2} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		$\frac{A(\Delta ABC)}{A(\Delta PQR)}$	$\frac{AB^2}{PQ^2}$	$\therefore \frac{A(\Delta A)}{2A(\Delta A)}$	$\frac{BC}{BC} = \frac{8^2}{PQ}$	2	$\therefore \frac{1}{2} = \frac{e}{P}$	$\frac{1}{Q^2}$			
22. The ratio of the areas of two similar triangles equals the ratio of the squares of their corresponding side Let $\triangle ABC$ be the bigger triangle and $\triangle PQR$ be the smaller triangle. Let $A(\triangle PQR) = x$, then $\frac{A(\triangle ABC)}{2} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		$PQ^2 = 6$	4 × 2, PC	$Q = \sqrt{64}$	× 2 = 81	$\sqrt{2}$ cm		∴ Answ	ver is (b)		
Let \triangle ABC be the bigger triangle and \triangle PQR be the smaller triangle. Let A(\triangle PQR) = x, then $\frac{A(\triangle ABC)}{2} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$	22.	The rati	io of the	areas o	f two sin	nilar tria	angles ed	quals the	e ratio o	f the squ	uares of their corresponding sides
Let A(\triangle PQR) = x, then $\frac{A(\triangle ABC)}{ABC} = \frac{8^2}{2} = \frac{64}{2}$ $\therefore \frac{64}{2} = \frac{48}{2}$		Let ΔAB	BC be the	e bigger	triangle	and ΔP	QR be th	e smalle	er triang	le.	
		Let A(Λ	PQR) = x	k. then <mark>A</mark>	(ΔABC) =	$\frac{8^2}{2} = \frac{64}{2}$		$\therefore \frac{64}{-} = \frac{4}{-}$	48		

$$\therefore x = 48 \times \frac{36}{64} = 27 \text{ cm}^2 \qquad \therefore \text{ Answer is (c).}$$

24.	$\frac{A(\text{Smaller }\Delta)}{A(\text{Bigger }\Delta)} = \frac{4^2}{6^2} = \frac{16}{36} = \frac{4}{9} = 4:9 \therefore \text{ Answer is (c).}$
25.	ST QR $\therefore \frac{3}{x} = \frac{x}{12}$ $\therefore x^2 = 3 \times 12$ $\therefore x = 6$. \therefore Answer is (a).
26.	$\angle A = \angle D, \angle B = \angle E \text{ and } \angle C = \angle F \qquad \therefore \angle D = \angle A = 47^{\circ},$
	$\angle E = \angle B = 83^{\circ}$ $\therefore \angle C = 180^{\circ} - (\angle A + \angle B) = 180^{\circ} - (47^{\circ} + 83^{\circ}) = 50^{\circ}$
	∴ Answer is (a).
27.	Clearly, A \leftrightarrow F, B \leftrightarrow D and C \leftrightarrow E
	\therefore ∠A = ∠F and ∠B = ∠D \therefore Answer is (a).
28.	The ratio of the areas of two trian <mark>gle of equal heights is equal to t</mark> he ratio of their
	corresponding bases.
	∴ Let the base of the remaining triangle be x cm.
	Then $\frac{A(\text{Smaller } \Delta)}{A(\text{Remaining } \Delta)} = \frac{2}{3} = \frac{8}{x}$ $\therefore \frac{2}{3} = \frac{8}{x}$ $\therefore x = 8 \times \frac{3}{2}$ $\therefore x = 12 \text{ cm}$ \therefore Answer is (d).
29.	Ratio of height = Ratio of sides = 1:3 Answer is (a)
30.	$\frac{(\text{Side of first } \Delta)^2}{(\text{Corresponding side of 2nd } \Delta)^2} = \frac{49}{64} \implies \text{Ratio of corresponding sides} = 7:8$
	\therefore Answer is (b).
	SAHAKAR
	DEFENCE/
	A GADENY A
	Leader

10. Theorem of Pythagoras

Important Facts and Formulae

- I. In a right angled triangle, if the perpendicular is drawn from the vertex of the right angle to the hypotenuse then triangles on either side of perpendicular are similar to the original triangle and to each other
 - In $\triangle ABC$, $\angle B = 90^{\circ}$,

seg BD⊥side AC

 \therefore i) $\triangle ADB \simeq \triangle ABC$

II.

iii) $\Delta ADB \sim \Delta BDC$ In a right angled triangle, perpendicular segment to the hypotenuse from the opposite vertex is the

ided.

- In ΔPQR , $\angle Q = 90^\circ$, seg QS \perp side PR
 - $\therefore QS^2 = PS \times RS$

$$\therefore QS = \sqrt{PS} \times RS$$

i.e. seg QS is geometric mean of seg PS and seg RS.

This is known as property of geometric mean.

III. THEOREM OF PYTHAGORAS:

In a right-an<mark>gled tr</mark>iangle, the square of the hypotenuse

is equal to the sum of the squares of the remaining two sides

geometric mean of the segments into which hypotenuse is divided.

In $\triangle ABC$, $\angle ABC = 90^{\circ}$.

side AC is hypotenuse.

∴ By the theorem of Pythagoras,

```
AC^2 = AB^2 + BC^2
```

APPLICATIONS OF PYTHAGORAS' THEOREM:

1. Theorem of 30°- 60°- 90° triangle:

If the angles of triangles are 30°, 60°, 90° then the side opposite to 30° is half of hypotenuse and the side opposite to 60° is $\frac{\sqrt{3}}{2}$ times the hypotenuse

2. Theorem of 45°- 45°- 90° triangle:

If the angles of a triangles are 45°, 45° & 90°, then each of the

perpendicular sides is $\frac{1}{\sqrt{2}}$ times of the hypotenuse.

3. If in an acute angled $\triangle ABC$,

 \angle C is an acute angle and seg AD \perp side BC & DC = x

then we have $c^2 = a^2 + b^2 - 2ax$

i.e. $AB^2 = AC^2 + BC^2 - 2BC.DC$

4. If in an obtuse-angled $\triangle PQR$, $\angle PQR = 90^{\circ}$

If seg PS L line QR and S-Q-R,

then $PR^2 = PQ^2 + QR^2 + 2QR.SQ$

5. THEOREM OF APPOLONIUS

If D is midpoint of side BC,

then $AB^2 + AC^2 = 2AD^2 + 2BD^2$

Multiple Choice Questions

1. In right angled triangle, two sides making right angle are 9 cm and 12 cm. Find the hypotenuse

a) 20 c<mark>m b) 10 cm c) 15 cm d) 25 cm</mark>

- 2. Find the diagonal of a square whose side is 20 cm.
 - a) 15 cm b) 20 c) 10 cm d) 7 cm

3. In a right angled triangle two side making right angle are 5 cm & 12 cm find the hypotenuse

a) 14 b) 13 c) 12 d) 15

4. In the Figure, diagonal AC is perpendicular bisector of diagonal BD.

BD=16 cm AB = 10 and BC = 17 cm.

Find the length of diagonal AC.

a) 20 cm b) 15 cm Groore) 21 cm he

5. In a right angled $\triangle ABC$, hypotenuse BC = 65 cm AB = 56 cm, Find AC

a) 35 cm b) 34 cm c) 15 cm d) 33 cm

6. The side of a square is 8 cm. Find the length of its diagonal

a) 6 cm b) 8 cm c) 7 cm d) 10 cm

7. The length of rectangle is 35 m and breadth is 12 m. Find the length of its diagonal.

a) 35 m b) 15 m c) 37 m d) 41 m

8. Observe the figure and find AC

d) 14 cm

CD = 12 cm, BC = 9 cm.

 $\angle ABD = \angle BCD = 90^{\circ}$ and find A($\triangle ABCD$)

c) 40 cm²

12 cm

16.	In Δ PQR, \angle Q = 90°. seg QM \perp side PR. PM=9, MR = 25 find QM.												
	a) 12	b)	16		c)	15		d)	19				
17.	Area of rec	tangle i	s 192 sq	. cm and	l its leng	gth is 16	cm. Find	d the dia	gonal o	f the rect	angle		
	a) 18 cm	b)	20 cm		c)	19 cm		d)	15 cm				
18.	In ∆ABC, A	$B^2 + AC^2$	= 122, E	BC = 10.	Find the	e length	of the m	nedian o	n side B	C.			
	a) 5	b)	6		c)	8		d)	10				
19.	In right-ang	gled tria	ngle, hy	potenus	e is 61 c	cm and o	one side	is 11 cm	. Find it	s other s	ide.		
	a) 60 cm	b)	58 cm		c)	70 cm		d)	55 cm				
20.	□PQ <mark>RS is a</mark>	parallel	ogram.	seg PM .	⊥ side O	R from t	the info	rmation	given in	the figu	re find A	(<mark>□PQ</mark> RS)	
	Q M 12	10 10											
	a) 20√ <mark>3</mark> sq	. units	b)	$30\sqrt{2}$ so	q. units	c)	60√3 s	q. units	d)50√3 s	q. u <mark>nits</mark>		
21.	seg AM <mark>is t</mark>	<mark>he</mark> med	ian of tr	iangle A	BC. If BC	C = 16 cm	n, AB² +	$AC^2 = 2C$	0 cm ² F	ind AM.			
	a) 5 cm		b)	6 cm		c)	7 cm		d) 10 cm			
22.	In the figur	<mark>e, seg</mark> B	D⊥s <mark>ide</mark>	e AC.									
	$\angle C = 30^{\circ}, \angle$	∠ <mark>A = 45</mark> °	⁰ . BD = 2	0 cm. Fi	nd BC.								
	HAST I	10-2	×.	C					Л	Y			
	a) 40 cm		b)	30 cm		c)	36 cm		d) 42 cm			
23.	Observe th	e figure	and find	d RT.		Lea	der						
			31 ¹										
	a) 8 cm		b)	10 cm		c)	20 cm		d) 15 cm			
	Answer Ke	ys											
	1. c	2. b	3. b	4. c	5. d	6. b	7. c	8. a	9. c	10. b			
	11. b	12. a	13. c	14. c	15. b	16. c	17. b	18. b	19. a	20. c			
	21. b	22. a	23. b										

HINTS AND SOLUTIONS

4. Diagonal AC is perpendicular bisector of diagonal BD

:
$$\triangle AEB$$
 is right-angled triangle and BE = $\frac{1}{2}$ BD = $\frac{1}{2} \times 16$ \therefore BE = 8cm

In right-angled ΔAEB , by Pythagoras theorem,

$$AB^2 = AE^2 + BE^2$$

$$\therefore AE^2 = AB^2 - BE^2 \qquad \therefore AE^2 = 10^2 - 8^2 \therefore AE^2 = 100 - 64 \qquad \therefore AE = 6 \text{ cm}$$

Similarly in right angled \triangle BEC by pythagoras theorem,

$$BC^2 = BE^2 + CE^2$$
 $\therefore CE^2 = BC^2 - BE^2 = 17^2 - 8^2 = 289 - 64 = 225 \therefore CE = 15 \text{ cm}$

$$AC = AE + CE \quad \therefore (6 + 15) \text{ cm} = 21 \text{ cm} \quad \therefore \text{ Answer is (c)}.$$

- 10. In $\triangle ADC$, $\angle C = 45^\circ$, $\angle ADC = 90^\circ$ $\therefore \angle CAD = 45^\circ$ (remaining angle of $\triangle ADC$)
 - $\therefore \Delta ADC \text{ is } 45^\circ 45^\circ 90^\circ \text{ triangle}$

$$\therefore \text{ AD} = \text{DC} = \frac{1}{\sqrt{2}} \text{ AC} = \frac{1}{\sqrt{2}} \times 8\sqrt{2} = 8 \text{ cm} \qquad \therefore \text{ Answer is (b)}.$$

14. In $\triangle PQM$, $\angle Q = 90^{\circ}$. seg QR \perp side PM.

∴ seg QR is the geometric mean of seg PR & seg RM.

$$\therefore QR^2 = PR \times RM \qquad \therefore (12)^2 = 9 \times RM \qquad \therefore RM = \frac{12 \times 12}{9} \therefore RM = 16$$

∴ PM= 9 + 16 = 25

PM = PR + <mark>RM</mark>

A(APQM) =
$$\frac{1}{2} \times PM \times QR = \frac{1}{2} \times 25 \times 12 = 150$$
 sq. unit

 \therefore Answer is (c).

18. Let seg AM be median on BC. Then BM = CM

$$\therefore \frac{1}{2} BC = \frac{1}{2} \times 10 \qquad \qquad \therefore MB = CM = 5.$$

By Appolonius theorem, $AB^2 + AC^2 = 2AM^2 + 2BM^2$... $\therefore 122 = 2AM^2 + 2(5)^2$

$$\therefore 122 = 2AM^2 + 50 \qquad \therefore 2AM^2 = 72 \qquad \therefore AM^2 = 36^{10} \therefore AM = 6$$

 \therefore Answer is (b).

19. Let $\triangle ABC$ be right angled triangle $\angle B = 90^{\circ}$

Hypotenuse = AC = 61 cm, side BC = 11 cm

By Pythagoras theorem, $AC^2 = AB^2 + BC^2$

$$\therefore AB^{2} = AC^{2} - BC^{2} = (61)^{2} - (11)^{2} = (61 - 11)(61 + 11) = 50 \times 72 = 2 \times 25 \times 2 \times 36$$

$$\therefore AB = 2 \times 5 \times 6 = 60 \text{ cm}$$
 $\therefore \text{ Answer is (a).}$

20. Opposite angles of parallelogram are congruent.

 $\therefore \angle Q = \angle S = 60^{\circ}$ (i)

opposite sides of a parallelogram are equal

∴ PQ = SR = 10(ii)

In right angled, $\triangle PQM$, $\angle Q = 60^{\circ}$, $\angle PMQ = 90^{\circ}$, $\angle QPM = 30^{\circ}$, $\triangle PQM$ is $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle

$$\therefore PM = \frac{\sqrt{3}}{2} PQ = \frac{\sqrt{3}}{2} \times 10 \qquad \qquad \therefore PM = 5\sqrt{3}$$

Area of parallelogram = base × height

 $\therefore A[PQRS] = QR \times PM = 12 \times 5\sqrt{3} = 60\sqrt{3} \text{ sq. Units}$

∴ Answer is (c).

SAHAKAR DEFENCE

Grooming the **Leader**

11. Circle : Tangent Important Facts and Formulae

1 Observe the figure:

We can draw infinite number of circles passing through two given points A and B.

If three points are collinear, there is no circle passing through these points, because there are at the most two points common to a circle and a line.

Observe the figure: (i) The circle and the line I have two points, A and B, common.

(ii) The circle and the line m have only one point, C common.

(iii) The circle and line n have no common point.

Theorem - 1: There is one and only one circle passing through given three non-collinear points.

Tangent and its properties:

Tangent line: A line in the plane of a circle which intersects the circle in one and only one point is called a tangent of the circle. the point of intersection is called the point of contact.

In the figure, the line AB is a tangent to the circle at the point P. Point P is the point of contact.

Theorem 2:

A tangent at any point of a circle is perpendicular to the radius through the point of contact.

In the figure, line I is the tangent to the circle at the point P. Seg OP is the radius through the point of contact P.

 \therefore line I \perp radius OP.

Theorem 3:

Grooming the

The line perpendicular to a radius at its outer end is a tangent to the circle.

In the figure, line I is perpendicular to radius OP at its outer end P.

 \div line I is a tangent to the circle.

Number of Tangents to a Circle through a given point:

Given a point P in the plane of a circle with centre O:

1] If the point P is inside the circle, then every line passing through the point P intersects the circle in two distinct points. Hence, none of them is a tangent to the circle.

2] If the point P is on the circle, then there is one and only one tangent to the circle passing through the point P.

3] If the point P is in the exterior of the circle, then two tangents can be drawn to the circle from the point P.

Theorem 4:

The length of the two tangent segments from an external point to a circle are equal.

In the figure given in (3) above, PA = PB.

Touching Circles:

1. Tangent circles: Two coplanar circles are said to be touching circles or tangent circles, if they have one and only one point in common.

i) If two circles touch each other and one circle is in the interior of the other, the circles are internally touching circles.

ii) If two circles touch each other and one circle is in the exterior of the other, the circles are externally touching circles.

Grooming the

Theorem 5:

If two circles are touching circles, then the common point (i.e., the point of contact) lies on the line joining their centres.

In the above figure (i), Q - P - A or P - Q - A.

In the figure (ii), P - A - Q.

If two circles touch each other, then there is a line passing through their point of contact and tangent to both the circles. (The tangent is called the common tangent to the touching circles.)

Observe the following figures:

i) If two circles are touching internally, then both the circles are on the same side of the

common tangent.

If two circles are touching externally, then both the circles are on the opposite sides of the common tangent. ii)

1.

2.

3.

4.

5.

- a) $6\sqrt{2}$ cm b) $9\sqrt{2}$ cm c) $8\sqrt{2}$ cm d) $7\sqrt{2}$ cm
- 6. P is the centre of the circle. Line AB is the tangent to the circle at the point T. The radius of the circle is 5 cm. Find the distance of centre from line AB.

a) 6 cm	b) 5 cm	c) 8 cm	d) 10 cm

7. In the figure, A & B are the centres of two circles touching each other at the point M. Line AC and line BD are tangents. If AD = 9 cm & BC = 6 cm, then find the lengths of seg AC & seg BD.

a) AC = $3\sqrt{21}$ cm; BD = 12 cm b) AC = $2\sqrt{21}$ cm; BD = 12 cm c) AC = $3\sqrt{21}$ cm; BD = 16 cm d) AC = $3\sqrt{23}$ cm; BD = 14 cm

b) 9 cm, 5cm, 4 cm

b) 6 cm

b) $2\sqrt{7}$ cm

b) 45⁰

8. In the figure \triangle ABC is an isosceles triangle with perimeter 44 cm. The base BC is of length 12 cm. sides AB and AC are congruent. A circle touches the sides as shown. Find the length of tangent segment from A to the circle

9. In the given figure, A, B, C are the centre of there tangent circles. AB = 6 cm, BC = 7 cm, AC = 5 cm. Find the radius of each circle.

a) 2 cm, 5 cm<mark>, 7 cm</mark>

c) 8 cm, 6 cm, 8 cm d) 2

d) 2 cm, 4 cm, 3 cm

10. Find the length of tangent segment from a point which is at a distance of 5 cm from the centre of a circle of radius 3 cm.

a) 4 cm

c) 5 cm

- 11. The length of the tangent drawn from a point 8 cm away from the centre of a circle of radius 6 cm is:
 - a) √7 cm
- 12. In the adjoining figure, PQ is a tangent from P to the circle and QOR is a diameter. If \angle PQR = 130°, then \angle QPO is:

c) 10 cm

a) 40°

c) 50°

d) 75°

d) 3 cm

d) 5 cm

13. If two equal circles touch each other externally, the common tangent divides the line of centres in the ratio

	a) 1:1 b) 2:1		c) 1:2	d) 3:2
14.	AC is tangent to a circle with co	entre O at the poi	nt A. ΔOAC is an isoscele	es triangle. \angle OCA is equal to:
	a) 30° b) 45°		c) 60°	d) 90°
15.	Two tangent at B and C from a	point A to a circle	e with centre P are such	that \angle BPC = 120° then \angle BAC = ?
	a) 40° b) 60°		c) 90°	d) 50°
16.	Two circle touch externally at I	P. A common tang	gent touches the circle a	t A and B. Then $\angle APB = ?$
	a) 90° b) 60°		c) 120°	d) None of these
	Answer Keys			
	1. c 2. b 3. b 4. c	5.d 6.b	7.a 8.a 9.d	10. a
	11. c 12. a 13. a 14. b	15. b 16. a		
	HINTS AND SOLUTIONS			
1.	Radii <mark>of same</mark> circle are equal.	5 cm		
	∴ OA <mark>= OC =</mark> OE			
	∴ The centre is equidistant from	m points A, C & E	∴ Answer is (c).	
2.	Draw PT ∴ seg PT⊥line	e AB.	ΛΚΛΙ	R
	∴ PT is dis <mark>tance</mark> of the point P	from the line AB.		
	PT = 6 cm (<mark>given r</mark> = 6 cm).	∴ Answer is (b)		
3.	Draw seg AM.			
	Line MN is tang <mark>ent at</mark> point M	and seg AM is rac	lius AM 1 MN	
	∴ ∠AMN = 9 <mark>0°.</mark>		DEM	
	In right angled ΔAMN , by Pytha	agoras theorem,		
	$AN^2 = AM^2 + MN^2$			
	$AM^2 = AN^2 - NM^2$	Le	eader	
	$AM^2 = 10^2 - 5^2 = 75$ $AM = 7$	√ <mark>75 = 5√3</mark>	∴ Answer is (b)	
4.	seg PM and seg PN are tangent	ts to th <mark>e circle an</mark>	d seg QM and QN are th	e radius from the point of contact.
	m∠PMQ = m∠PNQ = 90°.			
	The sum of measures of the an	ngles of quadrilate	eral is 360°.	
	m∠P + m∠PMQ + m∠PNQ + m	∠MQN = 360°		
	∴ 40° + 90° + 90° + m∠MQN = 3	360°		
	m∠MQN = 360° – 220°			

m∠MQN = 140°.

 \therefore Answer is (c)

5. In the right-angled
$$\Delta PMQ$$
, $\angle PMQ = 90^{\circ}$

$$PQ^{2} = PM^{2} + MQ^{2} = 7^{2} + 7^{2} = 98$$
 $\therefore PQ = \sqrt{98} = 7\sqrt{2}cm$ \therefore Answer is (d)

7. AM = AD = 9 cm(i)

similarly, BM = BC = 6 cm ... (ii)

AM + MB = AB (A-M-B)

$$\therefore$$
 9 + 6 = AB \therefore AB = 15 cm.

By tangent-perpendicularity theorem, radius AD 1 tangent BD at point Q

∴ ADB is right angled triangle

By Pythagoras theorem,

$$AB^2 = AD^2 + BD^2$$
 $\therefore BD^2 = AB^2 - AD^2 = 15^2 - 9^2 = 225 - 81 = 144$ $\therefore BD = 12 \text{ cm}.$

Answer is (a)

Similarly in right ΔABC,

$$AB^2 = BC^2 + AC^2$$

$$\therefore AC^2 = AB^2 - BC^2 = 225 - 36 = 189 = 9 \times 21$$
 $\therefore AC = 3\sqrt{21} \text{ cm}$

8. Perimeter of $\triangle ABC = 44$ cm. AB + BC + AC = 44 cm.

$$\therefore$$
 AB + AC = 44 - BC = 44 - 12 = 32 cm. AB = AC = 16 cm (i) (Given)

The tangent segments to a circle from an external point are of equal lengths

 \therefore AP = AQ; BP = BR; CQ = CR

Grooming

BP = BR = (16 - x) cm (ii)

CQ = CR = (16 - x) cm (iii)

BR + RC = BC
$$\therefore 16 - x + 16 - x = 12$$
 $\therefore 32 - 2x = 12 \therefore 2x = 20$ \therefore Answer is (a)

11. OP = 8 cm and OT = 6 cm

Let AP = AQ = x cm

$$\therefore PT = \sqrt{OP^2 + OT^2} = \sqrt{8^2 + 6^2} = 10cm \qquad \therefore Answer is (c).$$

12. ∠QOP =
$$(180^\circ - 130^\circ) = 50^\circ$$
 And, ∠PQO = 90°

 $\therefore \angle QPO = 180^{\circ} - (50^{\circ} + 90^{\circ}) = 40^{\circ}$ \therefore Answer is (a).

13. Since the direct common tangent to two circle divides the line joining their centres externally in the ratio of their centres externally in the ratio of their radii. Here both the circles being of equal radii, this ratio is 1 : 1.

∴ Answer is (a).

14. Clearly, $OA \perp AC$. So, $\angle OAC = 90^{\circ}$.

 $\triangle OAC$ being isosceles, OA = AC. $\therefore \angle OCA = \angle COA$.

But $\angle OCA + \angle COA = 90^{\circ}$ $\therefore \angle OCA = 45^{\circ}$ \therefore Answer is (b).

15. Use tangent radius property and sum of the angles of a quadrilateral.

: Answer is (b).

SAHAKAR DEFENCE

Grooming the **Leader**

Trigonometry **Important Facts and Formulae**

I Trigonometry: Trigonometry is a branch of Mathematics that combines Arithmetic, Algebra and Geometry together. Study of Trigonometry is very useful in Engineering, Astronomy, Navigation, etc. Trigonometry deals with the measurement of the sides and the angles of a triangle. When some angles and sides of a triangle are given, we can obtain remaining angles and sides of the triangle using Trigonometry.

4]

 $\cos \theta =$

II. **Trigonometric Ratios of Acute Angles:**

Consider right-angled $\triangle POM$, $\angle POM$ is an acute angle. It is denoted by θ . In $\triangle POM$, side OM is the adjacent side of angle θ .

Side PM is the opposite of angle θ . Side OP is the hypotenuse.

III. **Trigonometrical Ratios:**

 $\sin \theta = \frac{\text{opposite side of angle}}{2}$ 1] hypotenuse OP

2]
$$\cos \theta = \frac{\text{Adjacent side of angle}}{\text{hypotenuse}} = \frac{0}{0}$$

opposite side of angle _ PM $\tan \theta =$ 3] adjacent side of angle OM

5]
$$\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent side of angle}} = \frac{\text{OP}}{\text{OM}}$$
 6

IV. Interrelation between the Trigonometric Ratios

In the figure, $\triangle ABC$ is right-angled at B. $\angle A = \theta$

1] sin
$$\theta = \frac{BC}{AC}$$
 and cosec $\theta = \frac{AC}{BC}$

$$\therefore \sin \theta \times \csc \theta = \frac{BC}{AC} \times \frac{AC}{BC} = 1.$$

$$\therefore$$
 cosec $\theta = \frac{1}{\sin \theta}$ and $\sin \theta = \frac{1}{\cos \theta}$

Similarly, we can write the following relations:

2]
$$\cos \theta \times \sec \theta = 1$$
, $\sec \theta = \frac{1}{\cos \theta}$, $\cos \theta = \frac{1}{\sec \theta}$ each

3]
$$\tan \theta \propto \cot \theta = 1$$
, $\cot \theta = \frac{1}{\tan \theta}$, $\tan \theta = \frac{1}{\cot \theta}$

4]
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 5] $\cot \theta = \frac{\cos \theta}{\sin \theta}$

Trigonometric Ratios of Angles 30°, 45° and 60°:

I) Trigonometric ratios of angle 30°:

In the adjoining figure, $\triangle ABC$ is a right angled triangle.

 $m \angle B = 90^\circ$, $m \angle A = 30^\circ$ and $m \angle C = 60^\circ$.

 $\therefore \Delta ABC$ is a 30°- 60°- 90° triangle

√3a

Oppsite side of angle θ

A

OP

PM

OM

PM

hypotenuse

opposite side of angle

opposite side of angle

 $\cot \theta = \frac{\text{Adjacent side of angle}}{2}$

Then, by 30°- 60°- 90° triangle theorem, BC = a and AB = $\sqrt{3}$ a

$$\therefore \sin 30^\circ = \frac{BC}{AC} = \frac{1a}{2a} = \frac{1}{2} \qquad \qquad \cos 30^\circ = \frac{AB}{AC} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}$$
$$\tan 30^\circ = \frac{BC}{AB} = \frac{1a}{\sqrt{3}a} = \frac{1}{\sqrt{3}} \qquad \qquad \cot 30^\circ = \frac{AB}{BC} = \frac{\sqrt{3}a}{1a} = \sqrt{3}$$
$$\csc 30^\circ = \frac{AC}{BC} = \frac{2a}{1a} = 2 \qquad \qquad \sec 30^\circ = \frac{AC}{AB} = \frac{2a}{\sqrt{3}a} = \frac{2}{\sqrt{3}}$$

I) Trigonometric ratios of angle 60°:

Let us consider the trigonometric ratios of angle 60° in the above figure:

$$\sin 60^\circ = \frac{AB}{AC} = \frac{\sqrt{3}a}{2a} = \frac{\sqrt{3}}{2}$$

$$\cos 60^\circ = \frac{BC}{AC} = \frac{a}{2a} = \frac{1}{2}$$

$$\tan 60^\circ = \frac{AB}{BC} = \frac{\sqrt{3}a}{a} = \sqrt{3}$$

$$\cot 60^\circ = \frac{BC}{AB} = \frac{a}{\sqrt{3}a} = \frac{1}{\sqrt{3}}$$

$$\csc 60^\circ = \frac{AC}{BC} = \frac{2a}{a} = 2$$

A45°

a

R

III) Trigonometric ratios of angle 45°:

In the adjoining figure, in $\triangle ABC$,

 $m \angle B = 90^\circ$, $m \angle A = m \angle C = 45^\circ$. Let AB = BC = a. Then, by pythagoras theorem, we get, $AC = \sqrt{2}a$.

$$\sin C = \sin 45^\circ = \frac{AB}{AC} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}}$$

$$\cos C = \cos 45^\circ = \frac{AB}{AC} = \frac{a}{\sqrt{2a}} = \frac{1}{\sqrt{2}}.$$
$$\tan C = \tan 45^\circ = \frac{AB}{BC} = \frac{a}{a} = 1.$$
$$\cot C = \cot 45^\circ = \frac{BC}{AB} = \frac{a}{a} = 1.$$

$$\operatorname{cosec} C = \tan 45^\circ = \frac{AC}{AB} = \frac{\sqrt{2a}}{a} = \sqrt{2}$$

sec C = sec 45° =
$$\frac{AC}{BC} = \frac{\sqrt{2}a}{a} = \sqrt{2}$$

IV) Trigonometric ratios of angles 0° and 90°

i) sin $0^\circ = 0$; cos $0^\circ = 1$; tan $0^\circ = 0$; sec $0^\circ = 1$; cosec 0° and cot 0° are not defined.

ii) sin $90^\circ = 1$; cos $90^\circ = 0$; cosec $0^\circ = 1$; cot $90^\circ = 0$; tan 90° and sec 90° are not defined.

The table for the values of trigonometric ratios of angles:

	0°	30°	45°	60°	90°
Sin θ	0	1	1	$\sqrt{3}$	1
		2	$\sqrt{2}$	2	
Cos θ	1	$\sqrt{3}$	1	1	0
		2	$\sqrt{2}$	2	
Tan θ	0	1	1	$\sqrt{3}$	Not defined
		$\sqrt{3}$			
Cosec θ	Not defined	2	$\sqrt{2}$	2	1
				$\sqrt{3}$	
Sec θ	1	2	$\sqrt{2}$	2	Not defined
		$\sqrt{3}$			
Cot θ	Not defined	$\sqrt{3}$	1	1	0
				$\sqrt{3}$	

Multiple Choice Questions

In the Figure, $\Delta xyz = 90^{\circ}$. Write trigonometric ratio for sec x and sec Z. 1.

a) sec X = $\frac{ZX}{XY}$, sec Z = $\frac{ZX}{YZ}$	b) sec X = $\frac{XY}{ZY}$, sec Z = $\frac{YZ}{XY}$
c) sec $X = \frac{YZ}{ZX}$, sec $Z = \frac{YZ}{XY}$	d) sec X = $\frac{XY}{ZX}$, sec Z = $\frac{XY}{YZ}$

What is the value of tan 50°, sec 40°, sin 50° respectively from the given figure 2.

c) $\frac{7}{2}$

c) $\frac{7}{2}$

a) $rac{LT}{MT}, rac{LM}{LT}, rac{LT}{LM}$	b) $\frac{L}{L}$	$\frac{T}{T}, \frac{LT}{LM}, \frac{LT}{MT}$
c) $\frac{LT}{LM}$, $\frac{LT}{MT}$, $\frac{LM}{LT}$	d) $\frac{L}{L}$	<u>N</u> <u>LM</u> <u>LT</u> T' MT' TN

What is the value of VW from the figure given alongside 3.

a) 2√7

c) 3√2 Groord) 5√2

d) $\frac{2}{5}$

d) $\frac{9}{5}$

If $\sin\theta = \frac{2}{7}$, find $\csc\theta$. 4.

- a) $\frac{2}{7}$ If $tan\theta = \frac{2}{5}$, find $\cot \theta$. 5.
 - a) $\frac{2}{5}$

If $\sin\theta = \frac{\sqrt{2}}{3}$, $\cos\theta = \frac{1}{3}$, what is the value of $\tan \theta$. 6.

b) 7√2

b) $\frac{5}{2}$

b) $\frac{5}{2}$

a) $\frac{\sqrt{2}}{3}$ b) $\frac{3}{\sqrt{2}}$ c) $\frac{1}{3}$ d) $\sqrt{2}$

Find the value of $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$. 7.

	a) 4	b) 3	c) 2	d) 6					
8.	Find the value of 4 $\cot^2 45^\circ - \sec^2 60^\circ + \csc^2 30^\circ + \cot 90^\circ$.								
	a) 4	b) 6	c) 8	d) 2					
9.	If $\cos (40^\circ + x) = \sin 30^\circ$, find the value of x.								
	a) 30°	b) 40°	c) 20°	d) 60°					
10.	If tan y <mark>= sin</mark> 45	5°cos 45° + sin 30	0°, what is the va	alue of y.					
	a) 40°	b) 45°	c) 60°	d) 35°					
11.	Find the value	of cos 38° cos 52	2° - sin 38° sin 52	•					
	a) 1	b) 2	c) 0	d) 3					
12.	Find the value	of $\frac{\cos 80^{\circ}}{\sin 10^{\circ}}$ + 59° c	cosec 31°						
	a) 2	b) 4	c) 6	d) 8					
13.	2 tan 53° cot 80 cot 37° tan 10	°)°	Y						
	a) 2	b) 1	c) 0	d) 3					
14.	If tan 2A <mark>= cot</mark>	(A – 18°), then fi	nd the value of A	A where (2A) and (A - 18°) are acute a <mark>ngles.</mark>					
	a) 30°	b) 36°	c) 42°	d) 25°					
15.	If sin $\theta = \frac{45}{33}$ find	<mark>d the</mark> value of co	sec²θ - cot²θ						
	a) 2	b) 3	c) 1	d) 5					
16.	If 15 cot N = 8,	Find the value o	$f \frac{1}{\sqrt{\sec^2 N - 1}}$	DEMYZY					
	a) 7 12	b) $\frac{8}{15}$	c) $\frac{2}{5}$	d) $\frac{9}{19}$					
17.	Find the value	of A from sec 4A	x = cosec (A – 20	ader					
	a) 22°	b) 44°	c) 11°	d) 33°					
18.	Find the value	of A from tan 3A	a = si <mark>n 45° cos 4</mark> 5	° + sin 30°					
	a) 20°	b) 10°	c) 15°	d) 25°					
19.	Find the value	of 'x' if sin 2x = s	in 60° cos 30° - c	cos 60° sin 30°					
	a) 15°	b) 20°	c) 35°	d) 40°					
20.	Find the value	$tan^2\theta + cot^2\theta$ if t	$an \theta + \cot \theta = 2$						
	a) 5	b) 4	c) 2	d) 1					

21.
$$\left(\frac{\sin 4\pi^{2}}{\cos 4\pi^{2}}\right)^{2} + \left(\frac{\cos 4\pi^{2}}{\sin 4\pi^{2}}\right)^{2} + 4\cos^{2} 45^{2}$$
a) 1 b) 2 c) 2 c) 0 d) 3
22. Find the value of $\frac{\sin 5\pi^{2}}{\cos 4\pi^{2}} + \frac{\csc 4\pi^{2}}{\sec 5\pi^{2}} + 4\cos 50^{2} \csc 40^{2}$
a) 2 b) - 2 c) 3 d) 4
23. Find the value of 2 (cos^{2}45^{2} + tan^{2} 50^{2}) - 6 (sin^{2}45^{2} - tan^{2} 30^{2})
a) 2 b) 4 c) 6 d) 3
24. Find the value of x' if sin 2x = sin 60' cos 30^{2} - cos 60' sin 30^{2}.
a) 20^{2} b) 4 c) 5 d) 3^{2}
25. $\frac{1}{\cos 4\pi^{2} A} \cos 4 \tan^{2} A^{2}$
a) sin A b) cos A c) tan A d) cot A
26. $\frac{\sin 4 \sin 2 \sin 6 \cos 4 \tan^{2} A^{2}}{\tan 4 \sin 4} = 7$
a) sin A b) cos A c) tan A d) cot A
26. $\frac{\sin 4 \sin 6 \csc 6 \cos 4 \tan^{2} A}{\tan 6 \cos 4 \sin^{2}} + \tan 6 = 7$
a) 2 c cost $2 \sin 8 \times \tan 6 = 7$
a) 2 c cost $2 \sin 8 \times \tan 6 = 7$
a) 2 c cost $2 \sin 8 \times \tan 6 = 7$
b) $\frac{1}{\sqrt{2}} c) (\frac{\sqrt{2}}{3} d)$ None of these
27. $\frac{\sec 6\pi}{2 \cos 6\pi} \times \frac{\cos 6\pi}{2 \sin 8} \times \tan 6 = 7$
a) 2 c cot² $\theta + \tan^{2} \theta$ b) 2 cot² $\theta + \tan^{2} \theta$ c) 2 tan² $\theta + \cot^{2} \theta$ d) 2 cot² $\theta + \tan^{2} \theta$
28. If sin x = $-\frac{1}{2}$ and x lies in 4th quadrant, then cos x is:
a) $-\frac{\pi}{2}$ b) $\frac{1}{\sqrt{2}} c) (\frac{\sqrt{2}}{3} c) (\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} c) (\frac{3\pi}{3} \frac{\pi}{12} 0) (\frac{3\pi}{3} \frac{\pi}{12} \frac{$

	a) $\frac{5}{3}$	b)		c) $\frac{1}{6}$		d) $\frac{3}{10}$						
34.	If 16 cot x =	12, then $\left(\frac{s}{s}\right)$	in x–cos x in x+cos x	equals	5:							
	a) $\frac{1}{7}$	b) $\frac{3}{7}$		c) $\frac{2}{7}$		d) Non	e of the	se				
35.	If tan $\theta = \frac{3}{4}$ and $0^{\circ} < \theta < 90^{\circ}$, then the value of (sin θ cos θ) is:											
	a) $\frac{3}{5}$	b)		c) $\frac{12}{25}$		d) Non	e of the	se				
36.	If tan $\theta = \frac{1}{\sqrt{7}}$, the value	of $\left(\frac{\cos \theta}{\cos \theta}\right)$	$c^2\theta - sec^2$ $c^2\theta + sec^2$	θ θ)is:							
	a) $\frac{5}{7}$	b) $\frac{3}{4}$	2	c) $\frac{3}{7}$		d) $\frac{1}{12}$						
37.	If tan $\theta = \frac{4}{3}$ t	he value of	$\sqrt{\frac{1-\sin}{1+\sin}}$	$\frac{\theta}{\theta}$ is:			<u>l</u> ee					
	a) 2	b) $-\frac{1}{3}$		c) $\frac{1}{3}$		d) $\frac{3}{4}$						
38.	$\sqrt{\frac{1+\sin A}{1-\sin A}}$ is	equal to:			Y	UY						
	a) sec A + ta	n A	b) sec ²	A + tan²/	Ą	c) sec ²	A tan ² A		d) sec	A tan A		
39.	$\sqrt{\frac{1-\cos x}{1+\cos x}}$ is	equal to:	3									
	a) cosec x +	cot x	b) cose	c x - cot	x	c) cot ×	: - tan x		d) sec	x - t <mark>an x</mark>		
40.	$\sqrt{\frac{\sec x - \tan x}{\sec x + \tan x}}$	i <mark>s equal</mark> to	:									
	a) sec x + tai	n x	b) sec x	x - tan x		c) cose	c x + cot	x	d) cose	<mark>ec x</mark> - cot x		
	Answer Keys											
	1.a 2.a	a <mark>3.</mark> a	4. c	5. b	6. d	7. c	8. a	9. c	10. b			
	11. c 12.	a 13.b	14. b	15. c	16. b	17.a	18. c	19.a	20. c			
	31. d 32.	a 33. c	34. a	35. c	36. b	37. c	38. a	39. b	40. b			
	HINTS AND	SOLUTION	5							1		
5.	tan θ. cot θ = 1, $\frac{2}{5}$ × cot θ = 1, cot θ = $1 \times \frac{5}{2} \times \frac{5}{2}$. \therefore Answer is (b).											
8.	$\cot 45^\circ = 1$, sec $60^\circ = 2$, cosec $30^\circ = 2$, cot $90^\circ = 0$											
	$\therefore 4 \cot^2 45^\circ - \sec^2 60^\circ + \csc^2 30^\circ + \cot^2 90^\circ = 4 (1)^2 - (2)^2 + (2)^2 + 0 = 4 - 4 + 4 = 4$											
	∴ Answer is	(a).										
14.	$\tan \theta = \cot ($	90 — 0)										
	∴ tan 2A = c	ot (90 – 2A		(1)								
	tan 2A = cot	(A - 18°)		(2)								

from (2) & (1)

$$A - 18^\circ = 90^\circ - 2A$$
 $\therefore A + 2A = 90^\circ + 18^\circ$ $\therefore 3A = 108^\circ$ $\therefore A = 36^\circ$

∴ Answer is (b).

21. By the ratio of complementary angles,

1

$$\cos\theta = \sin(90 - \theta)$$
 $\therefore \cos 43^{\circ} = \sin(90 - 43)^{\circ} = \sin 47^{\circ}.$

and
$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

$$\therefore \left(\frac{\sin 47^\circ}{\cos 43^\circ}\right)^2 + \left(\frac{\cos 43^\circ}{\sin 47^\circ}\right)^2 - 4\cos^2 45^\circ = \left(\frac{\sin 47^\circ}{\sin 47^\circ}\right)^2 + \left(\frac{\sin 47^\circ}{\sin 47^\circ}\right)^2 - 4\left(\frac{1}{\sqrt{2}}\right)^2$$

$$= (1)^2 + (1)^2 - 4\left(\frac{1}{2}\right) = 1 + 1 - 2 = 2 - 2 = 0. \qquad \therefore \text{ Answer is (c).}$$

25.
$$\frac{1}{\csc^2 A \cdot \cos A \cdot \tan A} = \frac{1}{\csc^2 A \cdot \cos A \cdot \frac{\sin A}{\cos A}} = \frac{1}{\csc^2 A \cdot \sin A} = \frac{\sin^2 A}{\sin A} = \sin A$$

∴ Answer is (a)

26.
$$\frac{\sin\theta}{\tan\theta} \times \frac{\sec\theta}{\cot\theta} \times \frac{\csc\theta}{\cos\theta} = \frac{(\sin\theta.\csc\theta)\sec\theta}{(\tan\theta.\cot\theta)\cos\theta} = \frac{1\times\sec\theta}{1\times\cos\theta} = \sec^2\theta = \frac{1}{\cos^2 A} = \frac{1}{1-\sin^2\theta}$$

∴ Answ<mark>er is (d</mark>).

27.
$$\frac{\sec\theta}{\cos\theta} \times \frac{\csc\theta}{\sin\theta} \times \frac{\cos\theta}{\sin\theta} \times \tan\theta = \sec^2\theta \cdot \csc^2\theta \cdot \cot\theta \cdot \tan\theta = (1 + \tan^2\theta)(1 + \cot^2\theta) \times 1$$
$$= 1 + \cot^2\theta + \tan^2\theta + \tan^2\theta \cdot \cot^2\theta \times 1 = 1 + \cot^2\theta + \tan^2\theta + 1 \times 1$$

 $= 2 + \cot^2\theta + \frac{\tan^2\theta}{\cos^2\theta} \quad \therefore \text{ Answer is (a).}$

28. In 4th quadrant, cos x is positive.
$$\therefore \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

∴ answer is (c).

29.
$$\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$$
 coming the
 $\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{5}{12}$ and $\sec \theta = \frac{1}{\cos \theta} = \frac{13}{12}$ \therefore Answer is (b).

30. Since θ lies in the second quadrant, so cos θ is negative.

$$\therefore \cos \theta = -\sqrt{1 - \sin^2 \theta} = -\sqrt{\frac{1 - 64}{289}} = \frac{-15}{17} \qquad \therefore \text{ Answer is (b).}$$

31.
$$\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$$
. So $\tan \theta = \frac{5}{12}$

$$\therefore \sqrt{(1 + \tan \theta)(1 - \tan \theta)} = \sqrt{1 - \tan^2 \theta} = \sqrt{1 - \frac{25}{144}} = \frac{\sqrt{119}}{12} \qquad \therefore \text{ Answer is (a)}.$$

32. $\frac{x \sin \theta + y \cos \theta}{x \sin \theta - y \cos \theta} = \frac{x \tan \theta + y}{x \tan \theta - y}$ [Dividing Nr and Dr by cos 0]

$$\left(\frac{x \times \frac{x}{2}}{x \times \frac{y}{2}}\right) = \left(\frac{x^2 + y^2}{x \times y^2}\right) \quad \therefore \text{ Answer is (a).}$$
33. Given tan $\theta = \frac{1}{8} \quad \therefore \frac{5 \sin \theta - 1 \cos \theta}{5 \sin \theta + 2 \cos \theta} = \frac{5 \tan \theta - 3}{5 \tan \theta + 2} \qquad \dots \dots [Dividing Nr and Dr by cos]$

$$= \left(\frac{5 \times \frac{1}{2} + 3}{5 \times \frac{1}{2} + 2}\right) = \frac{1}{6} \quad \therefore \text{ Answer is (c).}$$
34. Given cot $x = \frac{12}{26} = \frac{3}{4} \qquad \therefore \frac{\sin x + \cos x}{\sin x + \cos x} = \frac{1 - \cos x}{1 + \cos x} \qquad \dots \dots [Dividing Nr and Dr by cos x]$

$$= \left(\frac{1 + 2}{1 + 2}\right) = \left(\frac{1}{4} \times \frac{1}{2}\right) = \frac{1}{7} \therefore \text{ Answer is (a).}$$
35. sec $\theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$. So $\cos \theta = \frac{4}{5}$.
Cosec $\theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$. So $\sin \theta = \frac{3}{5}$.
 $\therefore \sin \theta \cos \theta = \left(\frac{3}{5} \times \frac{4}{5}\right) = \frac{23}{25} \qquad \therefore \text{ Answer is (c).}$
36. sec² $\theta = (1 + \tan^2 \theta) = \left(1 + \frac{1}{2}\right) = \frac{8}{7}; \qquad (1 + \cot^2 \theta) = (1 + 7) = 8$.
 $\frac{\cos x^2 \theta}{\cos x^2 \theta} = \frac{(3 - \frac{x}{8})}{1 + \frac{9}{16}} = \frac{(4 - \frac{3}{2}, \frac{3}{2})}{\frac{1}{2}} \therefore \text{ Answer is (b).}$
37. Cosec $\theta = \sqrt{1 + \cot^2 \theta} = \sqrt{1 + \frac{9}{16}} = \frac{4}{5}$. So $\sin \theta = \frac{4}{5}$.
 $\sqrt{\frac{1 + \sin \theta}{1 + \sin \theta}} = \sqrt{\frac{1 + \frac{9}{16}}{1 + \frac{9}{16}}} = \frac{1 + \sin h}{\sqrt{1 - \sin h}} = \frac{1 + \sin h}{\cos h} = \frac{1}{\cos h} + \frac{\sin h}{\cos h} = \sec A + \tan A$.
 $\therefore \text{ Answer is (a).}$
39. $\sqrt{\frac{1 + \cos x}{1 + \cos x}} = \sqrt{\frac{1 + \cos x}{1 + \cos x}} = \frac{1 - \cos x}{\sqrt{1 - \cos x}} = \frac{1 - \cos x}{\sin x} = \frac{1 - \cos x}{\sin x$

13. Heights and Distances

Important Facts and Formulae

I. We already know that: In a right-angled \triangle OAB, where \angle BOA = θ

1] $\sin\theta = \frac{Perpendicular}{Hypotenuse} = \frac{AB}{OB};$ 2] $\cos\theta = \frac{Base}{Hypotenuse} = \frac{OA}{OB};$ 3] $\tan\theta = \frac{Perpendicular}{Base} = \frac{AB}{OA}$ 4] $\csce\theta = \frac{1}{\sin\theta} = \frac{Hypotenuse}{Perpendicular}$ 5] $\sec\theta = \frac{1}{\cos\theta} = \frac{Hypotenuse}{Base} = \frac{OB}{OA}$

$$5] \operatorname{Cot} \theta = \frac{1}{\operatorname{Tan} \theta} = \frac{\operatorname{Base}}{\operatorname{Perpendicular}} = \frac{OA}{AB}$$

1] $\sin^2\theta + \cos^2\theta = 1$ 2] 1 + $\tan^2\theta = \sec^2\theta$ 3] 1 + $\cot^2\theta = \csc^2\theta$.

OB AB

III. Values of T-ratios:

θ	0°	30° (π/6)	45° (π/4)	60° (π/3)	90° (π/2)
Sin $ heta$	0	1	1	$\sqrt{3}$	1
		$\overline{2}$	$\sqrt{2}$	$\overline{2}$	
Cosθ	1	$\sqrt{3}$	1	1	0
		$\frac{1}{2}$	$\sqrt{2}$	2	
Tanθ	0	1	1	$\sqrt{3}$	Not
		$\sqrt{3}$			defined
Cosec θ	Not	2	$\sqrt{2}$	2	1
	defined			$\sqrt{3}$	
Sec $ heta$	1	2	$\sqrt{2}$	2	Not
		$\sqrt{3}$			defined
Cotθ	Not	$\sqrt{3}$	1	1	0
	defined		Groomin	$\alpha f_{3/3}$	

- **IV.** Line of vision: If the observer is standing at the location 'A', looking at an object 'B' then the line AB is called line of vision.
- V. Angle of Elevation: Suppose a man from a point O looks up at an object P, placed above the level of his eye. Then, the angle which the line of sight makes with the horizontal through O, is called the angle of elevation of P as seen from O.

Angle of elevation of P from $O = \angle AOP$.

VI. Angle of Depression: Suppose a man from a point O looks down at an object P, placed below the level of his eye, then the angle which the line of sight makes with the horizontal through O, is called the angle of depression of P as seen from O.

B

Perpendicular

Hypotenuse

Base

θ

Angle of depression of P from O = $\angle AOP$.

Multiple Choice Questions

a) 173 m

b) 273 m

1. Two ships are sailing in the sea on the two sides of a lighthouse. The angle of elevation of the top of the lighthouse is observed from the ships are 30° and 45° respectively. If the lighthouse is 100 m high, the distance between the two ships is

d) 200 m

c) 300 m

A man standing at a point P is watching the top of a tower, which makes an angle of elevation of 30° with the 2. man's eye. The man walks some distance towards the tower to watch its top and the angle of the elevation becomes 45°. What is the distance between the base of the tower and the point P? A45° 0 b) data inadequate d) 3 units a) 9 units c) 12 units 3. The angle of elevation of the sun, when the length of the shadow of a tree is equal to the height of the tree is a) 45° c) 60° b) 30° d) None of these The angle of elevation of the sun, when the length of the shadow of a tree is times the height of the tree, 4. a) 30° b) 45° c) 60° d) 90° From a point P on a level ground, the angle of elevation of the top of a tower is 30°. If the tower is 100m 5. high, the distance point P from the foot of the tower is: a) 149 m b) 156 m c) 173 m d) 200 m 6. The angle of elevation of a ladder leaning against a wall is 60° and the foot of the ladder is 4.6m away from the wall. The length of the ladder is: a) 2.3 m b) 4.6 m c) 7.8 m d) 9.2 m 7. An observer 1.6 m tall is 20 m away from a tower. The angle of elevation from his eye to the top of the m tall is the height of the tower is: a) 21.6 m b) 23.2 m c) 24.72 m d) None of these 8. Two ships are sailing in the sea on the two sides of a lighthouse. The angles of elevation of the top of the lighthouse as observed from the two ships are 30° and 45° respectively. If the lighthouse is 100 m high, the distance between the two ships is: a) 173 m b) 200 m d) 300 m c) 273 m 9. A man standing at a point P is Watching the top of a tower, which makes an angle of elevation of 30° with the man's eye. The man walks some distance towards the tower to watch its top and the angle of elevation becomes 60°. What is the distance between the base of the tower and the point P? a) 4 units b) 8 units c) 12 units d) Data inadequate The angle of elevation of the top of a tower from a certain point is 30°. If the observer moves 20 m towards 10. the tower, the angle of elevation of the top of the tower increases by 150. The height of the tower is: a) 17.3 m b) 21.9 m d) 30 m c) 27.3 m 11. A man is watching from the top of a tower a boat speeding away from the tower. The boat makes an angle of depression of 45° with man's eye when at a distance of 60 metres from the tower. After 5 seconds, the angle of depression becomes 30°. What is the approximate speed of the boat, assuming that it is running in still water? d) 40 kmph a) 32 kmph b) 36 kmph c) 38 kmph On the same side of a tower, two objects are located. Observed from the top of the tower, their angles of 12. depression are 45° and 60°. If the height of the tower is 150 m, the distance between the objects is: a) 63.5 m b) 76.9 m c) 86.7 m d) 90 m A man on the top of a vertical observation tower observes a car moving at a uniform speed coming directly 13. towards it. If it takes 12 minutes for the angle of depression to change from 30° to 45°, how soon after this will the car reach the observation tower? b) 15 min. 49 sec. a) 14 min. 35 sec. c) 16 min. 23 sec. d) 18 min. 5 sec.
Answer Keys

1. b	2. b	3. a	4. a	5. c	6. d	7. a	8. c	9. d	10. c
11. a	12. a	13. c							

HINTS AND SOLUTIONS

1. Let BD be the lighthouse and A & C be the position of the ships.

Then, BD = 100 m, ∠BAD = 30°, ∠BCD = 45°

 $\tan 30^\circ = \frac{BD}{BA} \implies \frac{1}{\sqrt{3}} = \frac{100}{BA} \implies BA = 100\sqrt{3}$

$$\Rightarrow 1 = \frac{100}{BC} \Rightarrow BC = 100$$

Distance between the two ships = AC = BA + BC = $100\sqrt{3} + 100$

=
$$100 (\sqrt{3} + 1) = 100 (1.73 + 1)$$

= $100 \times 2.73 = 273 \text{ m}$

2.

 $\tan 30^\circ = \frac{SR}{PR} = \frac{SR}{PQ + QR}$

 $\tan 45^\circ = \frac{SR}{OR}$

Two equations and 3 variables.

Hence, we can not find the required value with the given data.

(Note that if one of the SR, PQ, QR is known, this becomes two equations and two variables and if that was the case, we could have found the required value.)

3. Consider the diagram shown alongside, where QR represents the tree and PQ

represents i<mark>ts shadow</mark>.

We have, QR = PQ, Let \angle QPR = θ

an
$$\Theta = \frac{QR}{PO} = 1$$
 ...(Since QR = PQ)

 $\Rightarrow \Theta = 45^{\circ} i.e. required.$

4. Let AB be the tree and AC be its shadow. Let $\angle ACB = \theta$.

Then,
$$\frac{AC}{AB} = \sqrt{3} \Rightarrow \cot \theta = \sqrt{3} \Rightarrow \theta = 30^{\circ}$$
. Coming the

5. Let AB be the tower. Then, $\angle APB = 30^{\circ}$ and AB = 100 m.

$$\frac{AB}{AP}$$
 = tan 30° = $\frac{1}{\sqrt{3}}$ Ans: 173 m.

6. Let AB be the wall and BC be the ladder. Then, APB = 60° and AC = 4.6 m.

$$\frac{AC}{BC} = \cos 60^\circ = \frac{1}{2}$$
 Ans: 9.2 m.

7. Let AB be the observer and CD be the tower. Draw BE L CD.

$$\frac{DE}{BE}$$
 = tan 30° = $\frac{1}{\sqrt{3}}$ Ans: 21.6 m.

8. Let AB be the lighthouse and C and D be the positions of the ships.

Then AB = 100 m, \angle ACB = 30° and \angle ADB = 45°.

 $\frac{AB}{AC} = \tan 30^\circ = \frac{1}{\sqrt{3}}, \qquad \frac{AB}{AD} = \tan 45^\circ = 1. \qquad \text{Ans: 273 m.}$

S Q 45° R

P

100 m

в

= 100

- 9. One of AB, AD and CD must have been given. So, data is inadequate.
- 10. Let AB be the tower and C and D be the points of observation.

Then, $\angle ACB = 30^{\circ}$ and $\angle ADB = 45^{\circ}$ and CD = 20 m.

Let AB = h. Then, $\frac{AB}{AC}$ = tan 30° = $\frac{1}{\sqrt{3}}$, $\frac{AB}{AD}$ = tan 45° = 1. Ans: 27.3 m.

11. Let AB be the tower and C and D be the two positions of the boats.

Then, $\angle ACB = 45^{\circ}$, $\angle ADB = 30^{\circ}$ and AC = 60 m.

Let AE = h. Then, $\frac{AB}{AC}$ = tan 45° = 1, $\frac{AB}{AD}$ = tan 30° = $\frac{1}{\sqrt{3}}$. Ans: 32 km/hr.

12. Let AB be the tower and C and D be the objects. Then AB = 150 m, \angle ACB = 45° and \angle ADB = 60°.

$$\frac{AB}{AD} = \tan 60^\circ = \sqrt{3}$$

$$\frac{AB}{AC} = \tan 45^\circ = 1$$
Ans: 33.5 m.

13. Let AB be the tower and C and D be the two positions of the car.

Then, $\angle ACB = 45^\circ$, $\angle ADB = 30^\circ$.

Let AB = h, CD = x and AC = y. $\frac{AB}{AC}$ = tan 45° = 1 $\frac{AB}{AD}$ = tan 30° = $\frac{1}{\sqrt{3}}$

Ans: 1<mark>6 min.</mark> 23 sec.

Grooming the **Leader**

14. Area and Volume Important Facts and Formulae

1) Triangle:

i) Area of triangle = $\frac{1}{2} \times b \times h$

ii) Heron's formula

Area of triangle ABC =
$$\sqrt{s(s - a)(s - b)(s - c)}$$

a + b + c = Perimeter

Thus, the sum of three sides of a triangle is called its perimeter.

 $S = \frac{a+b+c}{2}$ is the semi-perimeter of the triangle.

Pythagoras theorem: In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$AC^2 = AB^2 + BC^2$$

 $\therefore h^2 = p^2 + b^2$

iii) Area of an equilateral triangle $=\frac{\sqrt{3}}{4}$ (Side)² $=\frac{\sqrt{3}}{4}$ (a)²

2) Rectangle: For a rectangle of length I and breadth b, we have

- i) Perimeter = 2(l+b)
- ii) Area = l x b
- iii) Diagonal = $\sqrt{l^2 + b^2}$

3) Square: For a square, each of whose side is a, we have

i) Perimeter = 4 × Length of side = 4

- ii) Area = $(Side)^2 = a^2$
- iii) Diagonal of square = $\sqrt{a^2 + a^2}$

4) Parallelogram: For parallelogram, whose adjacent sides are b and a, we have

i) Perimeter = 2(a + b) = 2(Sum of adjacent sides)

ii) Area = Base x Height = AB x DM = bh

5) Rhombus: For a rhombus, whose diagonals are d_1 , d_2 , and each side is a, we have

i) Perimeter = 4 × Length of a side = 4a

ii) Area =
$$\frac{1}{2}$$
 (Product of its diagonals) = $\frac{1}{2} \times d_1 \times d_2$

6) Trapezium: For a trapezium, whose parallel sides are a and b, and h is the distance between them, we have

Area =
$$\frac{1}{2}$$
 (Sum of parallel sides) × Distance between them

$$=\frac{1}{2}(a + b)h$$

7) Quadrilateral: If h₁ and h₂ are the perpendicular distances on the distances on the AC of a quadrilateral ABCD from the vertices B and D, respectively, then

Area = $\frac{1}{2}$ (AC) (h₁ + h₂)

8) Circle:

i) Circumference of a circle:

```
\frac{\text{Circumference}}{\text{Diameter}} = \pi \times \text{Diameter} = \pi \times 2 \times r = 2 \pi r
(where \pi = \frac{22}{7} = 3.14)
```

ii) Area of a circle: It is the measurement of the surface enclosed by the circumference of the circle.

Area of a circle = πr^2 (where r = radius)

iii) A circular ring: It is an object bounded by the circumference of two concentric circles.

R = radius of the outer circle, r = radius of the inner circle

Area between circumferences of the two circles (shaded region)

= Area of external circle - Area of internal circle

$$=\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$$

Note: a) Distance travelled by a wheel in one revolution = Its circumference

b) Number of revolutions made by a wheel = Total distance travelled Circumference

iv) Semicircle: Each diameter of a circle divides the circle into two congruent parts and each part is called a semicircle.

In the figure, AB is the diameter. Therefore, APB is a semicircle.

- Length of arc (circular part) = $\frac{1}{2}x$ (Circumference of the circle) = $\frac{1}{2}x 2\pi r = \pi r$
- Perimeter of the semicircle = Length of arc + Diameter AB = πr + 2r
- Area of the semicircle = $\frac{1}{2}$ × Area of circle = $\frac{1}{2}$ × π r²

v) Sector of a circle: The part of a circle bounded by two radii and an arc is called a sector.

diagonal

The shaded portion is a sector as it is bounded by two radii OA and OB and arc APB. If the angle between radii OA and OB is θ , then

- Length of arc APB = $2\pi r x \frac{\theta}{360^{\circ}}$
- Perimeter of the sector = OA + OB + arc APB = $r + r + 2\pi r \times \frac{\theta}{360^{\circ}}$

• Area of the sector =
$$\pi r^2 x \frac{\theta}{2 \cos^2 \theta}$$

Note: If angle between the two radii is

- Less than 180°, the sector is called minor sector.
- More than 180°, the sector is called major sector.
- θ = 180°, the sector is one-fourths off the circle and is called gradrant.

vi) Incircle: The radius of incircle of an equilateral triangle of side $a = \frac{a}{a\sqrt{3}}$

vii) Circumcircle: The radius of circumcircle of an equilateral triangle of side $a = \frac{a}{\sqrt{2}}$

viii) Segment of a circle: A segment of a circle is the region bounded by an arc and a chord. Including the arc and the chord, the segment containing the minor arc is called a minor segment and the segment containing the major arc is the major segment.

- Area of the minor segment ACBA = $\frac{\pi r^2 \theta}{360^\circ} \frac{1}{2}r^2 sin\theta$ Area of the major segment ADBA = πr^2 (Area of the minor segment)
- Perimeter of the minor segment ACBA = $\frac{2\pi r\theta}{360^{\circ}}$ $2rsin\frac{\theta}{2}$

9) Cuboid:

1. Surface Area:

i)A cuboid has six rectangular faces.

ii) Opposite faces are parallel and congruent. They have equal area.

 $A(\Box ABCD) = A (\Box EFGH) = I \times b = Ib$

 $A(\Box ADHE) = A(\Box BCGE) = b x h = bh$

 $A(\Box ABFE) = A(\Box DCGH) = I \times h = Ih$

a. The total surface area of a cuboid $(S_t) = 2lb + 2bh + 2lh = 2 (lb + bh + lh)$

b. The faces ADHE, BCGH, ABFE and DCGH are vertical faces.

Surface area of vertical faces

= bh + bh + lh + lh = 2bh + 2lh

 $= h(2b + 2I) = height \times perimeter of the base$

c. The faces ABCD and EFGH are horizontal faces.

Surface area of horizontal faces = lb + lb = 2lb.

2. Volume: Volume of a cuboid = l x b x h

10) Cube: A cube has six faces which are congruent squares.

- 1. Total surface area of a cube = $6l^2$
- 2. Volume of a cube = I^3
- **11) Right Circular Cylinder:**
- 1. Surface area of a cylinder:

i) Curved surface area of a cylinder (S_c)

```
S_c = Area of \square ABCD = AB \times BC = 2\pi r \times h
```

```
\therefore S<sub>c</sub> = 2\pirh
```

Right Circular Cylinder

ii) Total surface area of a cylinder (S)

- $S_t = S_c + area of circular faces$
 - $= 2\pi rh + 2\pi r^2$
- \therefore S_t = 2 π r (h + r)
- 2. Volume of a cylinder:

```
Volume of a cylinder (V) = area of the base × height = \pi r^2 \times h
```

```
∴ V = πг²h
```

12) Cone (Right Circular Cone):

1. For a cone:

 $l^2 = h^2 + r^2$,

Grooming the

where I is the slant height, h is the vertical height and r is the radius.

- 2. Curved Surface area of a cone = $S_c = 2\pi rl$
- 3. Total surface area (S_t) of a cone = $\pi r^2 + \pi r l = \pi r (r + l)$
- 4. Volume of a cone = $\frac{1}{3}r^2h$

12) Sphere:

- 1. Surface area of a sphere = $4\pi r^2$
- 2. Volume of a sphere = $\frac{4}{3}\pi r^3$

14) Hemisphere:

1. Curv	ed surface area of a hen	nisphere = $S_c = 2\pi r^2$					
2. Tota	I surface area of a closed	d hemisphere = $S_t = 3\pi r^2$					
3. Volu	3. Volume of a hemisphere = $\frac{2}{3}\pi r^3$						
Multip	le Choice Questions						
1.	If the ar <mark>ea of</mark> a triangle	is 1176 cm ² and base : c	corresponding altitude is	3:4, then the altitude of the triangle			
	a) 45	b) 36	c) 56	d) None of these			
2.	The area of a triangle is	s 216 cm ² and its sides an	re in the ratio 3:4:5. Find	the perimeter of the triangle.			
	a) 6 <mark>4 cm</mark>	b) 72 cm	c) 88 cm	d) 100 cm			
3.	One side of a right-ang	led triangle is twice the o	other and the hypotenus	e is 10 cm. The area of the triangle is			
	a) 16 <mark>cm²</mark>	b) 28 cm ²	c) 20 cm²	d) 38 cm ²			
4.	The area of a rhombus diagonal.	s is 150 cm2. The length	of one of its diagonals i	is 20 cm. Find th <mark>e leng</mark> th of the other			
	a) 8 cm	b) 15 cm	c) 22 cm	d) None of these			
5.	The diag <mark>onal of</mark> rectang	gle is thrice its smaller sig	de. Find the ratio of the l	ength to the breadth of the rectangle.			
	a) 3√2:2	b) 2√2:3	c) 2√2:1	d) None of these			
6.	Find the circumference	of the circle whose area	a is 16 times the area of	the circle with diameter 1.4 m.			
	a) 15.4 m	b) 12.8 m	c) 17.6 m	d) 22. <mark>4 m</mark>			
7.	The ratio between the	circumferences of two c	ircles is 4:9. Find the rati	o between their areas.			
	a) 12:17	b) 14:73	c) 16:81	d) 21:23			
8.	A wheel of radius 40 c smaller wheel make wh	<mark>m is attached to a smal</mark> nen the large one makes	ler wheel of diameter 2 150 revolutions?	4 cm. How many revolutions will the			
	a) 300	b) 50 <mark>0</mark>	c) 475	d) 550			
9.	A sector with central a	ngle 63° cu <mark>t out from</mark> a c	ircle, contains 19.8 cm ² .	Find the radius of the circle.			
	a) 4 cm	b) 6 cm	c) 7 cm	d) 8 cm			
10.	The sum of radii of two of the circles.	circles is 7 cm and the di	fference of their circumf	erence is 8 cm. Find the circumference			
	a) 12 cm	b) 14 cm	c) 16 cm	d) 18 cm			
11.	A gas collecting jar wit contained.	h inner diameter 6 cm a	and height 25 cm is fille	d with a gas. Find the quantity of gas			

(_____)

a) 805.0 cm	805.6 cm ³	b) 815.6 cm ³	c) 706.5 cm ³	d) 905.6 cr
-------------	-----------------------	--------------------------	--------------------------	-------------

12.	What is the volume of a cylinder with radius 8 cm and height 28 cm?						
	a) 5632 cm ³	b) 6325 cm³	c) 3265 cm ³	d) 7354 cm ³			
13.	The height and volume	e of a cone are 18 cm & 9	24 cm ³ respectively. Fin	d the radius of cone?			
	a) 6 cm	b) 8 cm	c) 7cm	d) 10 cm			
14.	The ratio of the height	and the radius of a cone	e is 2:3 find the radius if	volume of the cone is 384 π cm ³			
	a) 12 cm	b) 10 cm	c) 8 cm	d) 14 cm			
15.	The curved surface are	ea of a cone is 314 cm ² . F	ind the slant height, if th	ne radius is 2 cm.			
	a) 50 cm	b) 45 cm	c) 48 cm	d) 54 cm			
16.	A h <mark>ollow hemisphere</mark> expenditure (π = 3.14)	of radius 50 cm is pair ?	nted from inner side at	the rate 10 paise per cm ² . Find the			
	a) 15 <mark>20 Rs</mark>	b) 1570 Rs	c) 1580 Rs	d) 1600 Rs			
17.	The s <mark>urface</mark> area of a s	phere is 616 cm ² . Find th	ne radius of the sphere				
	a) 6 cm	b) 8 cm	c) 7 cm	d) 12 cm			
18.	The rad <mark>ius &</mark> height of	a cone are 6 cm & 8 cm	respectively. Find the cu	rved surface area of the cone.			
	a) 140 cm ²	b) 120 cm²	c) 180 cm ²	d) 188.4 cm²			
19.	The total surface area	of a cylinder is 2464 cm ²	. If the radius and height	are equal find radius of cylinder.			
	a) 14 cm	b) 12 cm	c) 15 cm	d) 19 cm			
20.	A tinmaker co <mark>nvert</mark> a c cylinder is 7 cm. Find t	cubical metallic box into he height of each cylinde	10 cylindrical tins. Side er so made, if wastage 12	of the cube is <mark>5</mark> 0 cm and radius of the 2% is incurred in the process			
	a) 20 cm	b) 18 cm	c) 23 cm	d) 40 cm			
21.	The length, breadth a greatest rod that can b	nd height of a box area be put in it is: Groc	respectively 12 dm, 4	dm and 3 dm, then the length of the			
	a) 13 dm	b) 16 dm L	c) 9 dm	d) dm			
22.	If the length, breadth a	and heig <mark>ht of a cuboid</mark> ar	e 2m, 2m and 1m respe	ctively, then its surface area (in m^2) is:			
	a) 8	b) 12	c) 16	d) 24			
23.	If the length of diagona	al of a cube is $4\sqrt{3}$ cm, the	nen the length of its edge	e is:			
	a) 2 cm	b) 3 cm	c) 4 cm	d) 6 cm			
24.	If the height and the ra	adius of a cone are doub	led, the volume of the co	one becomes:			
	a) 3 times	b) 4 times	c) 6 times	d) 8 times			
25.	A solid metal ball of ra	dius 8 cm is melted and o	cast into smaller balls, ea	ich of radius 2 cm. The number of such			

balls is:

	a) 8	b) 16	c) 32	d) 64
26.	If a hemi-spherical dor	ne has an inner diameter	r of 28 m, then its volum	e (in m³) is:
	a) 6186.60	b) 5749.33	c) 7099.33	d) 7459.33
27.	The total surface area	(in cm ²) of a solid hemis	ohere whose diameter is	14 cm, is:
	a) 588	b) 392	c) 147	d) 98
28.	If a cylindrical rod of iro	on whose length is 12 tin er of balls will be:	nes its rad <mark>ius is melte</mark> d ar	nd cast into spherical balls of the same
	a) 3	b) 6	c) 9	d) 27
29.	If th <mark>e volume and the</mark> s	surface area of a sphere	are numerically the same	e, then its radius is:
	a) 1 <mark>unit</mark>	b) 2 units	c) 3 units	d) 4 units
30.	The volume of a pyram	nid (in cubic cm) of base	area 16 sq.cm and heigh	t 9 cm is:
	a) 36	b) 48	c) 72	d) 144
31.	The di <mark>mensions</mark> of a cu	ıboid in cm are 16 × 14 ×	20. Find its total surface	area?
	a) 1648 cm ²	b) 1676 cm²	c) 1748 cm ²	d) 1878 cm ²
32.	The tota <mark>l surface area respectively.</mark>	a of a cuboid is 166 cm	² . Find its length if brea	adth and heig <mark>ht are</mark> 5 cm and 4 cm.
	a) 6 cm	b) 7 cm	c) 8 cm	d) 10 cm
33.	Find the quan <mark>tity o</mark> f w m	ater, in litres, contained	in a cuboidal pit with ler	ngth 7 cm, breadth 5 m and depth 3.6
	a) 126800 litres	b) 120000 litres	c) 126000 litres	d) 148060 litres
34.	The length, breadth an	d height of a cuboid are	20 cm, 18 cm and 10 cm	respectively. Find its volume.
	a) 3600 cm ³	b) 3000 cm ³ Groc	c) 3050 cm ³	d) 3400 cm ³
35.	The side of cube is 60 o	cm. Find the total surface	e area of the cube	
	a) 20000 cm ²	b) 250 <mark>00 cm²</mark>	c) 21600 cm ²	d) 25200 cm ²
36.	Find the side a cube, if	its total surface area is 4	186 cm ²	
	a) 10 cm	b) 4 cm	c) 6 cm	d) 9 cm
37.	What is the volume of	the cube with side 5 cm	?	
	a) 125 cm ³	b) 625 cm ³	c) 225 cm ³	d) 115 cm³
38.	The volume of a cube i	s 512 cm ³ . Find the total	surface area of the cube	2
	a) 390 cm ²	b) 384 cm ²	c) 314 cm ²	d) 125 cm ²
39.	The side of cube is 6 cr	n. Find its total surface a	irea.	

a) 150 cm ²	b) 216 cm ²	c) 420 cm ²	d) 840 cm ²
-	-	-	-

40. What is the volume of a cylinder with radius 21 cm and height 12 cm?

a) 16, 632 cm ³	b) 18834 cm³	<mark>c)</mark> 19976 cm ³	d) 22,434 cm
----------------------------	--------------	---------------------------------------	--------------

Answer Keys

1. c	2. b	3. c	4. b	5. c	6. c	7. c	8. b	9. b	10. d
11. c	12. a	13. c	14. a	15. a	16. b	17. c	18. d	19. a	20. c
21. a	22. c	23. c 🔪	24. d	25. d	26. b	27. c	28. c	29. c	<mark>30.</mark> d
31. a	32. b	33. c	34. a	35. c	36. d	37. a	38. b	39. b	40. a
HINTS AND SOLUTIONS									

Area of the
$$\triangle$$
 ABC = $\frac{1}{2} \times b \times h = \frac{1}{2} \times 3x \times 4x$

 $\Rightarrow 1176 \text{ cm}^2 = \frac{1}{2} \times 3x \times 4x = 6x^2$

$$\Rightarrow x^2 - \frac{1176}{2} = 196$$

 \Rightarrow x = $\sqrt{196}$ = 14 cm, Hence, Altitude of the triangle = 4x = 14 × 4 = 56 cm

3. Let ABC is a right-angled triangle.

Let other side be x. One side be 2x.

By Pythagoras theorem, $h^2 = p^2 + b^2$

$$\Rightarrow (10)^2 = x^2 + (2x)^2 = x^2 + 4x^2 \qquad \Rightarrow 100 = 5x^2 \qquad \Rightarrow x^2 = 20$$

$$\therefore x = \sqrt{20} = 2\sqrt{5}$$
 cm, BC = x = $2\sqrt{5}$ cm

AB = 2x = 2 × $2\sqrt{5}$ cm = $4\sqrt{5}$ cm

Area of the triangle = $\frac{1}{2} \times \text{Base} \times \text{Height} = \frac{1}{2} \times 2\sqrt{5} \times 4\sqrt{5} = 4 \times 5 = 20 \text{ cm}^2$

5.

Let ABCD is a rectangle in which AB is the length and BC is the breadth.

As given, let smaller side be x.

Diagonal of a rectangle = $3 \times \text{Smaller side AC} = 3 \times x = 3x$

In ABC, by Pythagoras theorem, $AC^2 = AB^2 + BC^2 \Rightarrow (3x)^2 = AB^2 + (x)^2$

$$\Rightarrow 9x^2 = AB^2 + x^2 \qquad \Rightarrow 9x^2 - x^2 = AB^2 \Rightarrow AB^2 = 8x^2 \qquad \Rightarrow AB = \sqrt{8x^2} = 2\sqrt{2}x$$

Hence, Ratio = $\frac{\text{Length}}{Breadth} = \frac{\text{AB}}{\text{BC}} = \frac{2\sqrt{2} \text{ x}}{\text{x}} = \frac{2\sqrt{2}}{1} = 2\sqrt{2}:1$

6. Diameter of the circle = 1.4 m

$$r = \frac{d}{2} = \frac{1.4}{2} = 0.7 m$$

10 cm

21 40 -14 80 1 Diameter of the new circle = x

$$r = \frac{d}{2} = \frac{x}{2}$$

8.

9.

18.

19.

As per question, Area of the new circle = $16 \times Area of$ the circle

$$\pi \left(\frac{k}{2} \right)^{2} = 16 \times \pi r^{2} = 16 \times \pi \times (0.7)^{2}$$

$$\frac{k^{2}}{2^{2}} = 16 \times 0.49 \text{ m}^{2} = \frac{16 \times 49 \text{ m}^{2}}{100}$$

$$\kappa^{2} = \frac{16 \times 49 \text{ m}^{2} \times 4}{100}$$

$$\kappa = \sqrt{\frac{16 \times 49 \text{ m}^{2} \times 4}{100}} = 5.6 \text{ m}$$
Circumference of the circle $2\pi r = 2 \times \frac{22}{7} \times \frac{56}{2} \text{ m} = 17.6 \text{ m}$
b. As given in question, Larger wheel of radius = 40 cm
Circumference of the larger wheel of radius = 40 cm
Circumference of the larger wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = $2\pi r = 2\pi \times 40$ cm = $80\pi \text{ cm}$
Circumference of the smaller wheel = 80×150 revolutions = $24\pi \times 10^{2}$
 $\chi = \frac{80\pi \times 50}{24\pi} = 500$ revolutions.
Area of the sector = $\frac{\pi r^{2}\theta}{360^{2}} = \frac{\pi^{2} \times \pi^{2} \times 63^{2}}{360^{2}}$
 $\Rightarrow r^{2} = \frac{196 \text{ cm}^{2} \times 7 \times 63^{2}}{22 \times 83^{2}}$ $\Rightarrow r^{2} = 9 \times 4 \text{ cm}^{2} \therefore r = 3 \times 2 \text{ cm} = 6 \text{ cm}$
 $k^{2} = \pi r = 3.14 \times 6 \times 10 = 188.4 \text{ cm}^{2}$
 $\therefore \text{ Answer is (d)$
Total surface area of the cone,
 $S_{1} = 2\pi r (hr) \therefore 2464 = \frac{2 \times 2^{2}}{7} \times (r(r+r) [given = r]$
 $\therefore \frac{2464 \times 7}{2 \times 22} = r \times 2r = 2r^{2}$, $r^{2} = \frac{2464 \times 7}{2 \times 22 \times 2} = 28 \times 7 = 4 \times 7 \times 7$
 $\therefore r = 14 \text{ cm} \qquad \therefore \text{ Answer is (a)}$

- ∴ r = 14 cm. : Answer is (a)
- 20. side of cubical metallic box = 50 cm.

 \therefore area of metal sheet = $6l^2 = 6 \times 50 \times 50 = 15000 \text{ cm}^2$.

12% of sheet is wasted

: sheet wasted = $15000 \times \frac{7}{100} = 1800 \text{ cm}^2$

 \therefore sheet used to prepare tin = 15000 - 1800 = 13200 cm²

from this sheet 10 cylindrical tins are made

∴ sheet used to make 1 cylindrical tin = $\frac{1300}{100}$ = 1320 cm²(i)

sheet required to make 1 cylindrical tin = total surface area of cylinder

$$= 2\pi r (r+h) = \frac{2x22}{7} \times 7 (7+h) \qquad(ii)$$

from (1) & (2)

$$\frac{2x22}{7} \times 7 (7+h) = 1320$$

$$\therefore 7 + h = \frac{1320}{2x22} \quad \therefore 7 + h = 30 \quad \therefore h = 30 - 7 = 23 \quad \therefore \text{ Answer is (c)}$$

21. Length of the greatest rod which can be put in the box = length of the diagonal

$$=\sqrt{a^2 + b^2 + c^2} = \sqrt{12^2 + 4^2 + 3^2} = \sqrt{144 + 16 + 9} = \sqrt{169} = 13$$
 dm answer is (a).

22. Surface area of cuboid = $2(lb + bh + hl) = 2(2 \times 2 + 2x1 + 1 \times 2)m^2 = 16m^2$ \therefore answer is (c).

23. Let the edge of the cube be a cm. Then
$$\sqrt{3}a = 4\sqrt{3} \Rightarrow a = 4$$
. \therefore answer is (c).

24. Let original radius = R and original height = H. New radius = 2R and New height = 2H. $\frac{\text{New volume}}{\text{Original volume}} = \frac{\frac{1}{2}(2R)^2 \times 2\pi}{\frac{1}{2}\pi R^2 \times H} = \frac{8}{1} \quad \therefore \text{ So, it becomes 8 times. } \therefore \text{ answer is (d).}$

25. Number of Balls =
$$\frac{\frac{4}{3}\pi \times (8)^3}{\frac{4}{3}\pi \times (2)^3} = \frac{512}{8} = 64$$
 \therefore answer is (d).

26. Volume =
$$\left(\frac{2}{3} \times \frac{22}{7} \times 14 \times 14 \times 14\right)$$
 = 5749.33m³ \therefore answer is (b).

27. Total surface area =
$$3\pi r^2 = 3 \times \pi \times (7)^2 = (147\pi) cm^2$$
 \therefore answer

28. Let the radius of the rod be R. Then, its length = 12 R. π R2 ×12R

Number of balls =
$$\frac{\text{Volume of the rod}}{\text{Volume of 1 ball}} = \frac{\pi R^2 \times 12R}{\frac{4}{2}\pi R^3} = 9$$
 \therefore answer is (c)

- 29. $4\pi R^2 = \frac{4}{3}\pi R3 \implies R = \left(4 \ge \frac{3}{4}\right) = 3$ units \therefore answer is (c).
- 30. Volume = (Area of the base) x Height = $(16 \times 9) \text{ cm}^2 = 144 \text{ cm}^2$ \therefore answer is (d).

The quantity of water in pit = volume of pit = $l \times b \times h = 700 \times 500 \times 360 = 126000000 \text{ cm}^3$. Now, 1 litre = 1000 cm³

r is (c).

- \therefore the quantity of water in litres = $\frac{126000000}{1000}$ = 126000 litres.
- ∴ Answer is (c)

SAHAKAR DEFENCE

Grooming the **Leader**